Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
Twisting of quantum differentials and the Planck scale Hopf algebra
Abstract:
We show that the crossed modules and bicovariant differential calculi on two Hopf algebras related by a cocycle twist are in 1-1 correspondence. In particular, for quantum groups which are cocycle deformation-quantisations of classical groups the calculi are obtained as deformation-quantisations of the classical ones. As an application, we classify all bicovariant differential calculi on the Planck scale Hopf algebra . This is a quantum group which has an limit as the functions on a classical but non-Abelian group and a limit as flat space quantum mechanics. We further study the noncommutative differential geometry and Fourier theory for this Hopf algebra as a toy model for Planck scale physics. The Fourier theory implements a T-duality-like self-duality. The noncommutative geometry turns out to be singular when and is therefore not visible in flat space quantum mechanics alone.
We show that the crossed modules and bicovariant differential calculi on two Hopf algebras related by a cocycle twist are in 1-1 correspondence. In particular, for quantum groups which are cocycle deformation-quantisations of classical groups the calculi are obtained as deformation-quantisations of the classical ones. As an application, we classify all bicovariant differential calculi on the Planck scale Hopf algebra . This is a quantum group which has an limit as the functions on a classical but non-Abelian group and a limit as flat space quantum mechanics. We further study the noncommutative differential geometry and Fourier theory for this Hopf algebra as a toy model for Planck scale physics. The Fourier theory implements a T-duality-like self-duality. The noncommutative geometry turns out to be singular when and is therefore not visible in flat space quantum mechanics alone.
MSC: 58B32 (17B37 18D10 53D55)
Journal: Communications in Mathematical Physics
ISSN: 0010-3616
Year: 1999
Volume: 205
Number: 3
Pages: 617--655
Zbl Number: 0939.58007



Autores Institucionales Asociados a la Referencia: