Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

On the largest prime factor of the k-fibonacci numbers

Abstract:

Let P(m) denote the largest prime factor of an integer m >= 2, and put P(0) = P(1) = 1. For an integer k >= 2, let (F-n((k)))n >=(2-k) be the k-generalized Fibonacci sequence which starts with 0, ... , 0, 1 (k terms) and each term afterwards is the sum of the k preceding terms. Here, we show that if n >= k+2, then P(F-n((k))) > 0.01 root log n log log n. Furthermore, we determine all the k-Fibonacci numbers F-n((k)) whose largest prime factor is less than or equal to 7.
Keywords: K-Fibonacci numbers; greatest prime factor; explicit estimate; linear forms in logarithms
MSC: 11B39 (11J86)
Journal: International Journal of Number Theory
ISSN: 1793-0421
Year: 2013
Volume: 9
Number: 5
Pages: 1351-1366
MR Number: 3077719
Revision: 1
Notas: Accession Number: WOS:000320468400016
Created Created: 2013-07-22 10:38:44
Modified Modified: 2014-02-04 11:36:07
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: