Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Algebraic independence of infinite products generated by Fibonacci and Lucas numbers

Abstract:

The aim of this paper is to give an algebraic independence result for the two infinite products involving the Lucas sequences of the first and second kind. As a consequence, we derive that the two infinite products Pi(infinity)(k=1)(1+1/F-2(k)) and Pi(infinity)(k=1)(1+1/L-2(k)) are algebraically independent over Q, where {F-n}(n >= 0) and {L-n}(n >= 0) are the Fibonacci sequence and its Lucas companion, respectively.
Keywords: Equations
MSC: 11J85 (11B39)
Journal: Hokkaido Mathematical Journal
ISSN: 0385-4035
Year: 2014
Volume: 43
Number: 1
Pages: 1-20
MR Number: 3178476
Revision: 1
Notas: Accession Number: WOS:000334325500001
Created Created: 2014-05-16 17:41:33
Modified Modified: 2014-08-04 11:57:38
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: