Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
The Homogenised enveloping algebra of the lie algebra sl(a,C)
Abstract:
In this paper, we study the homogenised algebra B of the enveloping algebra U of the Lie algebra s?(2,?). We look first to connections between the category of graded left B-modules and the category of U-modules, then we prove B is Koszul and Artin–Schelter regular of global dimension four, hence its Yoneda algebra B! is self-injective of radical five zeros, and the structure of B! is given. We describe next the category of homogenised Verma modules, which correspond to the lifting to B of the usual Verma modules over U, and prove that such modules are Koszul of projective dimension two. It was proved in Martínez-Villa and Zacharia (Approximations with modules having linear resolutions, J. Algebra266(2) (2003), 671–697)] that all graded stable components of a self-injective Koszul algebra are of type ZA?. Here, we characterise the graded B!-modules corresponding to the Koszul duality to homogenised Verma modules, and prove that these are located at the mouth of a regular component. In this way we obtain a family of components over a wild algebra indexed by ?.
In this paper, we study the homogenised algebra B of the enveloping algebra U of the Lie algebra s?(2,?). We look first to connections between the category of graded left B-modules and the category of U-modules, then we prove B is Koszul and Artin–Schelter regular of global dimension four, hence its Yoneda algebra B! is self-injective of radical five zeros, and the structure of B! is given. We describe next the category of homogenised Verma modules, which correspond to the lifting to B of the usual Verma modules over U, and prove that such modules are Koszul of projective dimension two. It was proved in Martínez-Villa and Zacharia (Approximations with modules having linear resolutions, J. Algebra266(2) (2003), 671–697)] that all graded stable components of a self-injective Koszul algebra are of type ZA?. Here, we characterise the graded B!-modules corresponding to the Koszul duality to homogenised Verma modules, and prove that these are located at the mouth of a regular component. In this way we obtain a family of components over a wild algebra indexed by ?.
MSC: 16S30; 17B10
Journal: Glasgow Mathematical Journal
ISSN: 0017-0895
Year: 2014
Volume: 56
Number: 3
Pages: 561-568



Autores Institucionales Asociados a la Referencia: