Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
A note on n! modulo p
Abstract:
Let p be a prime, ? > 0 and 0 < L + 1 < L + N < p. We prove that if p1/2+?< N < p1-?, then #{n! (mod, p); L + 1 ? n ? L + N} > c (N log N)1/2, c = c(?) > 0. We use this bound to show that any ??0(modp) can be represented in the form ? ? n1!?n7!(modp), where ni= o(p11/12). This refines the previously known range for n
Let p be a prime, ? > 0 and 0 < L + 1 < L + N < p. We prove that if p1/2+?< N < p1-?, then #{n! (mod, p); L + 1 ? n ? L + N} > c (N log N)1/2, c = c(?) > 0. We use this bound to show that any ??0(modp) can be represented in the form ? ? n1!?n7!(modp), where ni= o(p11/12). This refines the previously known range for n
MSC: 11L03 (11B50 11B75 11L40)
Journal: Monatshefte für Mathematik
ISSN: 1436-5081
Year: 2017
Volume: 182
Number: 1
Pages: 23-31
Zbl Number: 06677792



Autores Institucionales Asociados a la Referencia: