Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
Repdigits as Euler functions of Lucas numbers
Abstract:
We prove some results about the structure of all Lucas numbers whose Euler function is a repdigit in base 10. For example, we show that if L-n is such a Lucas number, then n < 10(111) is of the form p or p(2), where p(3) vertical bar 10(P-1) - 1.
We prove some results about the structure of all Lucas numbers whose Euler function is a repdigit in base 10. For example, we show that if L-n is such a Lucas number, then n < 10(111) is of the form p or p(2), where p(3) vertical bar 10(P-1) - 1.
Keywords: Fibonacci numbers; Lucas numbers; Applications of linear forms in logarithms
Journal: Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica
ISSN: 1844-0835
Year: 2016
Volume: 24
Number: 2
Pages: 105-126
Revision: 1



Autores Institucionales Asociados a la Referencia: