Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Proceedings

On distribution of elements of subgroups in arithmetic progressions modulo a prime

Editor: Matematicheskii Institut IM. V.A. Steklova
Keywords: Let F p be the field of residue classes modulo a large prime number p. We prove that if G is a subgroup of the multiplicative group Fp* and if I? F p is an arithmetic progression, then |G?I|=(1+o(1))|G|I|/p+R, where |R|<(|I|1/2+|G|1/2+|I|1/2|G|3/8p?1/8)po(1). We use this bound to show that the number of solutions to the congruence x n ? ? (mod p), x ? ?, L < x < L + p/n, is at most p 1/3?1/390+o(1) uniformly over positive integers n, ? and L. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author
Publisher: Moscow : MAIK Nauka/Interperiodica Pub
Journal: Proceedings of the Steklov Institute of Mathematics
ISSN: 1531-8605
Year: 2018
Volume: 303
Pages: 50-57
Revision: 1
Created Created: 2019-03-19 17:34:39
Modified Modified: 2019-04-09 11:48:49
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: