Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
New estimates for exponential sums over multiplicative subgroups and intervals in prime field
Abstract:
Let H be a multiplicative subgroup of Fp? of order H>p1/4. We show that max(a,p)=1?|?x?Hep(ax)|?H1?31/2880+o(1), where ep(z)=exp?(2?iz/p), which improves a result of Bourgain and Garaev (2009). We also obtain new estimates for double exponential sums with product nx with x?H and n?N for a short interval N of consecutive integers.
Let H be a multiplicative subgroup of Fp? of order H>p1/4. We show that max(a,p)=1?|?x?Hep(ax)|?H1?31/2880+o(1), where ep(z)=exp?(2?iz/p), which improves a result of Bourgain and Garaev (2009). We also obtain new estimates for double exponential sums with product nx with x?H and n?N for a short interval N of consecutive integers.
Keywords: Kloosterman Sums; Galois Field ; Fermat Quotient
MSC: 11L07 (11T23)
Journal: Journal of Number Theory
ISSN: 1096-1658
Year: 2020
Volume: 215
Pages: 261-274
MR Number: 4125913
Revision: 1
Notas: (Web of Science-2019) Q3 FI: 0.7
(Scimago) Q1 FI: 0.92 Índice H 40 (Estados Unidos)



Autores Institucionales Asociados a la Referencia: