Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Tame and wild theorem for the category of modules filtered by standard modules

Abstract:

We introduce the notion of interlaced weak ditalgebras and apply reduction procedures to their module categories to prove a tame-wild dichotomy for the category of ?-filtered modules for an arbitrary finite homological system . This includes the case of standardly stratified algebras. Moreover, in the tame case, we show that given a fixed dimension d, for every d-dimensional indecomposable module , with the only possible exception of those lying in a finite number of isomorphism classes, the module M coincides with its Auslander-Reiten translate in . Our proofs rely on the equivalence of with the module category of some special type of ditalgebra.
Keywords: Dialgebras||Quasi-hereditary algebras||Standardlly stratified algebras||Homological systems||Tame and wild algebras|| Reduction functors
MSC: 16G60 (16G20 16G70)
Journal: Journal of Algebra
ISSN: 1090-266X
Year: 2024
Volume: 650
Created Created: 2025-05-02 17:59:40
Modified Modified: 2025-05-02 18:31:36
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: