Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
On the number of nonzero digits of the partition function
Abstract:
Let p(n) be the function that counts the number of partitions of n. Let b a parts per thousand yen 2 be a fixed positive integer. In this paper, we show that for almost all n the sum of the digits of p(n) in base b is at least log n/(7log log n). Our proof uses the first term of Rademacher's formula for p(n).
Let p(n) be the function that counts the number of partitions of n. Let b a parts per thousand yen 2 be a fixed positive integer. In this paper, we show that for almost all n the sum of the digits of p(n) in base b is at least log n/(7log log n). Our proof uses the first term of Rademacher's formula for p(n).
Keywords: Partitions; Sum of digits
MSC: 11P82 (11A63)
Journal: Archiv der Mathematik (Basel)
ISSN: 0003-889X
Year: 2012
Volume: 98
Number: 3
Pages: 235--240



Autores Institucionales Asociados a la Referencia: