Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Graph morphisms and exhaustion of curve graphs of low-genus surfaces

Abstract:

Let S be an orientable, connected surface of finite topological type, with genus g?2 , empty boundary and complexity at least 2; we prove that any graph endomorphism of the curve graph of S is actually an automorphism. Also, as a complement of the author’s previous results, we prove that under mild conditions on the complexity of the underlying surfaces, any graph morphism between curve graphs is induced by a homeomorphism of the surfaces. To prove these results, we construct a finite subgraph whose union of iterated rigid expansions is the curve graph C(S) . The sets constructed, and the method of rigid expansion, are closely related to Aramayona and Leininger’s finite rigid sets. We prove as a consequence that Aramayona and Leininger’s rigid set also exhausts C(S) via rigid expansions. The combinatorial rigidity results follow as an immediate consequence, based on the author’s previous results.
Keywords: Curve graph||Low-genus surface||Rigid expansions
Journal: Proceedings of the Edinburgh Mathematical Society
ISSN: 1464-3839
Year: 2025
Volume: 68
Number: 4
Pages: 1018-1068
Revision: 1
Notas: Q2 (Reimo Unido) Web of Science. Q2 Scopus. CC BY El autor contó con el apoyo de las becas de investigación IA104620, IN114323 e IN101422 del programa UNAM-PAPIIT durante la elaboración de este artículo. Asimismo, recibió apoyo de la beca de investigación Ciencia de Frontera 2019 CF 217392 del programa CONAHCYT.
Created Created: 2025-11-10 16:29:51
Modified Modified: 2025-11-10 16:32:11
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: