Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Digit sums of binomial sums

Abstract:

Let b >= 2 be a fixed positive integer and let S(n) be a certain type of binomial sum. In this paper, we show that for most n the sum of the digits of S(n) in base b is at least c(0) logn/(log log n), where c(0) is some positive constant depending on b and on the sequence of binomial sums. Our results include middle binomial coefficients (2n n) and Apery numbers A(n). The proof uses a result of McIntosh regarding the asymptotic expansions of such binomial sums as well as Baker's theorem on lower bounds for nonzero linear forms in logarithms of algebraic numbers.
Keywords: Sum of digits; Binomial coefficients; Linear forms in logarithms
MSC: 11N56 (11A63 11B65)
Journal: Journal of Number Theory
ISSN: 0022-314X
Year: 2012
Volume: 132
Number: 2
Pages: 324--331
MR Number: 2854101
Revision: 1
Notas: Accession Number: WOS:000297447100003
Created Created: 2012-12-07 11:49:39
Modified Modified: 2014-02-13 13:45:36
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: