Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
Arithmetic properties of the integer part of the powers of an algebraic number
Abstract:
For a real number x, we let left perpendicular x inverted left perpendicular be the closest integer to x. In this paper, we look at the arithmetic properties of the integers left perpendicular theta(n) inverted left perpendicular when n >= 0, where theta > 1 is a fixed algebraic number.
For a real number x, we let left perpendicular x inverted left perpendicular be the closest integer to x. In this paper, we look at the arithmetic properties of the integers left perpendicular theta(n) inverted left perpendicular when n >= 0, where theta > 1 is a fixed algebraic number.
Keywords: Powers of algebraic numbers; digital representations; applications of linear forms in logarithms and the subspace theorem
MSC: 11K16 (11D75 11J87)
Journal: Glasnik Matematiki. Serija III
ISSN: 0017-095X
Year: 2009
Volume: 44(64)
Number: 2
Pages: 285--307



Autores Institucionales Asociados a la Referencia: