Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
On the index of composition of the Euler function and of the sum of divisors function
Abstract:
Given an integer n >= 2, let lambda(n) := (log n)/(log gamma(n)), where gamma(n) = Pi(p vertical bar n) p, denote the index of composition of n, with lambda(1) = 1. Letting phi and sigma stand for the Euler function and the sum of divisors function, we show that both lambda(phi(n)) and; lambda(sigma(n)) have normal order 1 and mean value 1. Given an arbitrary integer k >= 2, we then study the size of min {lambda(phi(n)), lambda(phi(n + 1)), ..., lambda(phi(n + k - 1))} and of min {lambda(sigma(n)), lambda(sigma(n + 1)), ..., lambda(sigma(n + k - 1))} as n becomes large.
Given an integer n >= 2, let lambda(n) := (log n)/(log gamma(n)), where gamma(n) = Pi(p vertical bar n) p, denote the index of composition of n, with lambda(1) = 1. Letting phi and sigma stand for the Euler function and the sum of divisors function, we show that both lambda(phi(n)) and; lambda(sigma(n)) have normal order 1 and mean value 1. Given an arbitrary integer k >= 2, we then study the size of min {lambda(phi(n)), lambda(phi(n + 1)), ..., lambda(phi(n + k - 1))} and of min {lambda(sigma(n)), lambda(sigma(n + 1)), ..., lambda(sigma(n + k - 1))} as n becomes large.
Keywords: Euler function; sum of divisors function
MSC: 11N25 (11A25)
Journal: Journal of the Australian Mathematical Society
ISSN: 1446-7887
Year: 2009
Volume: 86
Number: 2
Pages: 155--167



Autores Institucionales Asociados a la Referencia: