Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Uniform distribution of fractional parts related to pseudoprimes

Abstract:

We estimate exponential sums with the Fermat-like quotients f(g)(n) = g(n-1)-1/n and h(g)(n) = g(n-1)-1/P(n), where g and n are positive integers, it is composite, and P(n) is the largest prime factor of n. Clearly, both f(g)(n) and h(g)(n) are integers if n is a Fermat pseudoprime to base g, and if n is a Carmichael number, this is true for all g coprime to it. Nevertheless, our bounds imply that the fractional parts {f(g)(n) and {h(g)(n) are uniformly distributed, on average over g for f(g)(n), and individually for h(g)(n). We also obtain similar results with the functions (f) over tilde (g)(n) = gf(g)(n) and (h) over tilde (g)(n) = gh(g)(n).
Keywords: Heilbronns exponential sum; large sieve inequality; carmichael numbers; modulo primes; divisor; bounds
MSC: 11L07 (11N37 11N60)
Journal: Canadian Journal of Mathematics
ISSN: 0008-414X
Year: 2009
Volume: 61
Number: 3
Pages: 481--502
MR Number: 2514480
Revision: 1
Notas: Accession Number: WOS:000265953500001
Created Created: 2012-12-07 13:49:34
Modified Modified: 2014-02-12 11:07:24
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: