Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
On the largest prime factor of the Mersenne numbers
Abstract:
Let P(k) be the largest prime factor of the positive integer k. In this paper, we prove that the series Sigma(n >= 1)(log n)(alpha)/P(2(n) - 1) is convergent for each constant alpha < 1/2, which gives a more precise form of a result of C. L. Stewart ['On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers', Proc. London Math. Soc. 35(3) (1977), 425-447].
Let P(k) be the largest prime factor of the positive integer k. In this paper, we prove that the series Sigma(n >= 1)(log n)(alpha)/P(2(n) - 1) is convergent for each constant alpha < 1/2, which gives a more precise form of a result of C. L. Stewart ['On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers', Proc. London Math. Soc. 35(3) (1977), 425-447].
Keywords: Primes; Mersenne numbers; applications of sieve methods
MSC: 11N36 (11N25)
Journal: Bulletin of the Australian Mathematical Society
ISSN: 0004-9727
Year: 2009
Volume: 79
Number: 3
Pages: 455--463



Autores Institucionales Asociados a la Referencia: