Usuario: guest
No has iniciado sesión
No has iniciado sesión
Type: Article
A note on the least totient of a residue class
Abstract:
Let q be a large prime number, a be any integer and epsilon be a fixed small positive quantity. Friedlander and Shparlinksi (Least totient in a residue class, Bull. London Math. Soc. 39 (2007), 425-432) have shown that there exists a positive integer n < q(5/2+epsilon) such that phi(n) falls into the residue class a (mod q. Here, phi(n) denotes Euler's function. In the present paper we improve this bound to n < q(2 + epsilon).
Let q be a large prime number, a be any integer and epsilon be a fixed small positive quantity. Friedlander and Shparlinksi (Least totient in a residue class, Bull. London Math. Soc. 39 (2007), 425-432) have shown that there exists a positive integer n < q(5/2+epsilon) such that phi(n) falls into the residue class a (mod q. Here, phi(n) denotes Euler's function. In the present paper we improve this bound to n < q(2 + epsilon).
MSC: 11N64 (11L20 11L40 11N69)
Journal: Quarterly Journal of Mathematics
ISSN: 0033-5606
Year: 2009
Volume: 60
Number: 1
Pages: 53--56
MR Number: 2506368
Revision: 1
DOI: 10.1093/qmath/han005
Notas: Accession Number: WOS:000263606300003



Autores Institucionales Asociados a la Referencia: