Logo CCM

Sistema de Referencias Bibliográficas

Centro de Ciencias Matemáticas UNAM

Usuario: guest
No has iniciado sesión
Type: Article

Noetherianity and Gelfand-Kirillov dimension of components

Abstract:

The category of all additive functors Mod(mod A) for a finite dimensional algebra A were shown to be left Noetherian if and only if A is of finite representation type by M. Auslander. Here we consider the category of all additive graded functors from the category of associated graded category of mod A to graded vector spaces. This category decomposes into subcategories corresponding to the components of the Auslander-Reiten quiver. For a regular component we show that the corresponding graded functor category is left Noetherian if and only if the section of the component is extended Dynkin or infinite Dynkin.
Keywords: Auslander-Reiten quiver; Graded categories; Koszul theory; Gelfand-Kirillov dimension
MSC: 16G70 (16G10 16P90)
Journal: Journal of Algebra
ISSN: 0021-8693
Year: 2010
Volume: 323
Number: 5
Pages: 1369--1407
MR Number: 2584961
Revision: 1
Notas: Accession Number: WOS:000274598200010
Created Created: 2012-12-11 16:38:21
Modified Modified: 2014-02-12 16:43:01
Warn Referencia revisada
Autores Institucionales Asociados a la Referencia: