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Abstract. Given a smooth manifold M and a Lie group G, we con-
sider parallel transport maps –groupoid homomorphisms from a path
groupoid in M to G– as an alternative description of principal G-bundles
with smooth connections on them. Using a cellular decomposition C of
M , and a system of paths associated to C , we define a homotopical
equivalence relation of parallel transport maps, leading to the concept
of an extended lattice gauge (ELG) field. A lattice gauge field, as used
in Lattice Gauge Theory, is part of the data contained in an ELG field,
but the latter contains additional topological information of local na-
ture, sufficient to reconstruct a principal G-bundle up to equivalence, in
the spirit of Barrett [3]. Following a theorem of Pachner [15], we give a
criterion to determine when two ELG fields over different cell decompo-
sitions C and C ′ define equivalent bundles. As a first concrete physical
application, we define a simple operation that captures the geometric
essence of the ’t Hooft loop operator in the theory of quantum gauge
fields, and study its relation with the bundle structure of an ELG field.
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1. Introduction

The main objective of this paper is to study how the topology of principal
bundles may be incorporated into the formulation of Lattice Gauge Theory.
The standard geometric approach to the study of field theories with gauge
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symmetry, such as the Yang-Mills theory, considers a principal G-bundle
P → M over a smooth manifold M , from which a space of “states” A /G ,
consisting of smooth connections in P , modulo the action of the group of
gauge transformations, is induced. However, in the standard formulation
of Lattice Gauge Theory on Rn (or more generally, Rn/Λ for a lattice Λ)
[5], the discrete analog of a gauge field, the so-called lattice gauge field,
corresponds geometrically to the evaluation of the parallel transport of a
connection (a gauge-invariant notion) over a discrete collection of paths,
generated by a lattice. Our motivation is the observation that, while such
notion captures the essence of a discrete gauge field (a question of a local
nature), it is insufficient to characterize the topology of P : the information
on how to glue together local trivializations is missing. While the question of
construction of topological charges in special cases and in reduced regimes is
known (e.g. [14], where a physical application is given in the case dimM = 2,
G = SO(2), and [16], where the focus is in the non-abelian case dimM = 4,
G = SU(2)), it is our impression that the previous problem has not yet been
explored comprehensively in the existent literature.

In the continuum, the Barrett-Kobayashi construction [3] ensures that
a suitable axiomatization of the notion of holonomy of a connection [9, 1],
which is based on the structure of the space of based loops in M modulo thin
equivalence, is sufficient to reconstruct a pair (P,A), consisting of a principal
G-bundle and a smooth connection on it. Since a lattice gauge field may be
conceived as a discretization of a smooth holonomy map, It is then natural
to infer, from the very nature of the Barrett-Kobayashi construction, that a
refined notion of discrete gauge field, which we call an extended lattice gauge
field, can be given instead, as an equivalence class of gauge fields, under a
suitable topological equivalence relation, in such a way that the topology of
a principal G-bundle prevails through the decimation process. Such is the
basic idea that we exploit.

The general problem of classification of isomorphism classes of principal
G-bundles over M , has a natural homotopical interpretation [13] in terms
of the classifying space BG, and it is ultimately related to the structure of
the homotopy spaces π1(G, e), . . . , πn−1(G, e). The Čech cohomology with
coefficients in G describes the classification as well, and for the n-sphere,
n ≥ 2, the answer to the classification problem is greatly simplified, since
there is a correspondence between equivalence classes of smooth principal
G-bundles P → Sn, and isotopy classes of smooth functions g : Sn−1 → G,
the clutching maps for P . Part of our strategy is to take advantage of the
fundamental principle of local triviality to the understanding of an arbitrary
principal G-bundle P → M . We provide an alternative homotopical inter-
pretation of an equivalence class of smooth principal G-bundles, which has
the advantage of being constructive, more explicit, and more amenable for
computations than the standard one. The essence of the problem is trans-
lated into a combinatorial one. The starting point will consist on choosing
an auxiliary “scaffolding” structure on M , namely a special but generic type
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of cellular decomposition C , which is dual to a triangulation in M , together
with a network of paths Γ joining a series of based points for every pair of
neighboring cells. Then we adapt the notion of an equivalence class of Čech
cocycles, to a homotopy class of collections of compatible clutching maps.
The intrinsic triangulation then serves the practical purpose of organizing
the new homotopy data, as the clutching maps we consider are defined over
the (n− 1)-skeleton of C , and the compatibility conditions they satisfy are
systematically encoded over the (n− 2)-skeleton of C .

Our first important result, theorem 1, is a reconstruction theorem, in
the spirit of Barrett [3], adapted to the notion of parallel transport of local
path families. Equipped with it, we introduce the notion of an extended
lattice gauge field. Then, we proceed to dissect the extended lattice fields,
into elementary local pieces (theorem 2). Such pieces consist of the standard
LGT data, namely, the values of parallel transport over a network of paths in
M , but also contain homotopy classes of extensions of glueing maps from the
boundary of a (k+1)-cell –a k-sphere– to its interior. In the process, we are
able to identify the minimal local topological data, contained in an extended
lattice gauge field, that is sufficient to reconstruct a given bundle, which we
name the core of an extended lattice gauge field. Such a glossary of local
data turns out to reveal a torsor structure in the space of extended lattice
gauge fields for a given triple (M,C , G), extending the group structure on
the space of standard LGT data. Moreover, the natural fibration from the
space of extended lattice gauge fields onto the space of isomorphism classes of
principal G-bundles, reveals a new generalized homogeneous space structure
in the latter. While not the main objective our our present investigation, the
characterization of the space of isomorphism classes of principal G-bundles
as a generalized homogeneous space, which is inspired by the holonomy
point of view, provides a new promising structure, of combinatorial nature,
to organize and classify its internal structure. In particular, it should be
possible to reconstruct the Chern-Weil theory of characteristic classes from
such a combinatorial point of view. Such questions deserve to be investigated
separately, and we are planning to address them in the near future.

We have described results which build on the introduction of an additional
structure over a manifold M , namely a triangle-dual cellular decomposition.
Our results concerning principal bundles over M can be freed from such an
auxiliary structure. We use a dual version of the fundamental theorem of U.
Pachner [15], relating any two triangulations of M by a series of elementary
transformations, to provide a criterion that determines when two extended
lattice gauge fields, defined over different cellular decompositions, define
equivalent principal G-bundles (theorem 3). It is in that way that our results
are freed from their previous dependence on a cellular decomposition.

We complement the previous results with a concrete physical application.
We define a simple geometric operation on a gauge field, that captures the
geometric essence of the ’t Hooft loop operator in the theory of quantum
gauge fields. In theorem 4, We study its effect in the bundle structure of
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the extended lattice gauge fields. Interestingly, our approach leads to the
notion of a non-abelian gerbe, as the natural geometric framework for the
study the ’t Hooft operation.

The work is organized as follows. In section 2, we introduce the special
cellular decompositions we will work with. Section 3 is a short introduction
to path structures and local path families, which are exploited in section 4,
in order to introduce the cellular parallel transport maps, the reconstruction
theorem for bundles with connection, and the extended lattice gauge fields.
Section 5 constitutes the heart of the article, where the relation between
extended lattice gauge fields and isomorphism classes of principal bundles
is studied, and is complemented with section 6, describing explicitly the
extended lattice gauge fields in small dimensions. Section 7 describes the
dependence of the bundle structure of the extended lattice gauge fields on
different cellular decompositions, while section 8 concludes with a study of
the ’t Hooft loop operation in the present topological context. In addition,
two appendices complement our work. Appendix A is a brief introduction
to cellular decompositions, where the genericity of the triangle-dual ones is
justified, while appendix B contains a proof of the correspondence between
the space of equivalence classes of principal G-bundles, and the space of
equivalence classes of local homotopy data in the core of an ELG field.

2. Triangle-dual cellular decompositions

Let M be an n-dimensional smooth manifold. It is a classical result
of J. H. C. Whitehead that M admits a piecewise-linear (P.L.) structure,
namely, a triangulation ∆ for which the link of any simplex is a piecewise-
linear sphere, and moreover, any two such P.L. structures are related by a
piecewise-smooth bijection. It would be sufficient to assume the piecewise-
smoothness of any such ∆. For any triangulation ∆, we will denote its
0-simplices by v, w, . . . and unless otherwise stated, a given 1-simplex by τ .
The letter σ will denote an arbitrary k-simplex. We will assume henceforth
that M is orientable, and that a choice of orientation has been given to it.

Definition 1. A cellular decomposition C = tnk=0Ck of M is called triangle-
dual if there exist an open cover U = {Uv}cv∈Cn of M with the following
properties:

(i) For every σ ∈ N(U) (the nerve of U, an abstract simplicial complex),
the open set Uσ = ∩v⊂σUv is contractible,

(ii) The geometric realization of N(U) is a P.L structure for M . In
particular, N(U) is pure and ∩n+1

i=0 Uvi = ∅ for all pairwise-different
cv0 , . . . , cvn+1 ∈ Cn,

(iii) There is a 1-to-1 correspondence between the k-simplices σ ∈ N(U)
and the (n− k)-cells cσ ∈ Cn−k, in such a way that cσ ⊂ Uσ.

Remark 1. The motivation behind this definition is that, for any choice of
P.L. structure ∆ of M , the dual cellular decomposition ∆∨ of M , which
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is constructed in terms of the canonical barycentric subdivision of ∆, is
triangle-dual with respect to the open cover of M given by the stars of the
vertices of ∆ (figure 1). Conversely, given a triangle-dual cellular decompo-
sition C of M , it is also possible to provide a full characterization of a P.L.
structure ∆ such that ∆∨ = C if we are allowed to strengthen the choice
of the cover U. Namely, by a star-like cover we mean an open cover where,
moreover, Dk = Sk − Sk−1, k = 0, . . . , n is a disjoint union of embedded
smooth k-disks, for S−1 = ∅, and

Sk = M \
⋃

|σ|=k+2

Uσ, k = 0, . . . , n.

This way, the components of each Dk correspond to the interiors of the
k-simplices of ∆, and Sk corresponds to the k-th skeleton of a triangu-
lation ∆. Observe that, in particular, for any k-cell cσ ∈ Ck, there is
an induced triangle-dual cellular decomposition of ∂ck (a piecewise-smooth
(k − 1)-sphere in M).

To complement the previous picture, and justify the naturality of triangle-
dual cellular decompositions, a genericity property satisfied by them is stated
and proved in lemma 6 in appendix A.

Figure 1. A triangle-dual cellular decomposition C on a surface.

Remark 2. A very important combinatorial feature that distinguishes the
triangle-dual cellular decompositions can be described as follows. When a
cellular decomposition C is triangle-dual, and cσ ∈ Ck, there are exactly
n − k + 1 (k + 1)-cells cσ1 , . . . , cσn−k+1

∈ Ck+1 such that ∩n−k+1
j=1 cσj = cσ.

This is so since, over the dual abstract simplicial complex ∆, the n− k + 1
different (n− k − 1)-simplices σ1, . . . , σn−k+1 determine the boundary δ(σ)
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of a unique (n − k)-simplex σ. If necessary, one could denote such cσ by
cσ1...σn−k+1

. Following the same logic, we conclude that for every cσ ∈ Ck,
cσ can be expressed as the intersection of exactly n−k+1 closures of n-cells
cv1 , . . . , cvn−k+1

. As a consequence, one has the following. Whenever there
is a triple {cτ1 , cτ2 , cτ3} ⊂ Cn−1 whose closures intersect nontrivially in cσ,
for some cσ ∈ Cn−2, there is a unique triple {cv1 , cv2 , cv3} ⊂ Cn such that

(2.1) cτ1 = cv2 ∩ cv3 , cτ2 = cv3 ∩ cv1 , cτ3 = cv1 ∩ cv2 ,
and

(2.2) cτ1 ∩ cτ2 ∩ cτ3 = cv1 ∩ cv2 ∩ cv3 = cσ.

Remark 3. Over a triangle-dual cellular decomposition, an orientation in
M induces an orientation on the elements of each complete descending flag
in C . Once a k-cell cτ has been given an orientation, there is an induced
orientation on every (k − 1)-cell cσ ⊂ ∂cτ ∼= Sk−1. When the cellular
decomposition is triangle-dual, the two different orientations that any k-cell
cσ may acquire can be described as follows. Every gapless descending flag
ending in cσ is of the form

cv1 ⊃ cv1 ∩ cv2 ⊃ · · · ⊃
n−k+1⋂
j=1

cvj ,

and moreover, any other gapless flag would correspond to a permutation of
the ordered (n− k + 1)-tuple (cv1 , . . . , cvn−k+1

). Then, two different gapless
flags ending at the same element induce the same orientation if and only
if they differ by an even permutation.1 Moreover, for every ordered triple
{cv1 , cv2 , cv3} as in remark 2, we can decree an orientation in the induced
triple {cτ1 , cτ2 , cτ3} from the choice of flags cv1 ⊃ cτ2 , cv2 ⊃ cτ3 and cv3 ⊃ cτ1 ,
in such a way that the orientations furtherly induced in cσ coincide. We will
say that the triple

(2.3) {cv1 ⊃ cτ2 ⊃ cσ, cv2 ⊃ cτ3 ⊃ cσ, cv3 ⊃ cτ1 ⊃ cσ}
has been given a cyclic orientation, which is clearly invariant under cyclic
permutations of the indices. Given any cσ ∈ Cn−2, there are two choices
of cyclic orientations in its corresponding triple of flags (2.3). Equivalently,
one may reconstruct a cyclic orientation from a choice of orientation of the
2-simplex σ.

In the case when the manifold M is an Euclidean space or a quotient of it
by a lattice (i.e., a cylinder or a torus), it would be of paramount importance
to relate their standard cell decompositions generated by a square lattice in
Rn to the triangle-dual cell decompositions. Hence, we include the following
lemma, justifying that the constructions and results of this work are also
relevant and applicable in those standard cases.

1The previous definition is compatible with the corresponding notion of orientation of
the simplex σ.
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Lemma 1. The cell decomposition C 0 of Rn induced by the rectangular
lattice Λ0 = Zn can be regarded as a degeneration of a family of triangle-
dual cellular decompositions C ε, ε ∈ (0, 1).

Proof. Setting a 1-1 correspondence between n-cells c0
v in C 0 and the 0-

subcell (iv1, . . . , i
v
n) in their closure, where for each k = 1, . . . , n,

ivk = min{ik : (i1, . . . , in) ∈ cv},
we can identify the n-cells in C 0 with the elements in Λ0. For any ε ∈ (0, 1),
consider the lattice Λε in Rn, of n-tuples of real numbers of the form

(i1, i2 + εi1, . . . , in−1 + εin−2, in + εin−1) , i1, . . . , in ∈ Z.
Then, in particular, Λ0 = Zn. Just as the lattice Λ0 acts as the group of
translation symmetries of C 0, the lattice Λε will act on C ε as its symmetry
group of translations. The n-cell cεv, as well as its closure, is then defined by
translating c0

v by the vector

ε
(
0, iv1, . . . , i

v
n−1

)
,

(figure 2). It should be remarked that although there is a 1-1 correspondence
between n-cells in C 0 and C ε by construction, new k-cells, k = 0, . . . , n− 1
are created in C ε by subdivision of the boundary cells of each n-cell cεv. It
is not difficult to see that, indeed, C ε is triangle-dual for every ε ∈ (0, 1).
Notice that over C 0, each 0-cell is the common intersection of 2n 1-cells.
The ε-shifts introduced to define C ε separate n− 1 of these 1-cells, leaving
exactly n + 1 1-cells on each old and new 0-cell. The argument with the
higher dimensional cells is similar, giving the combinatorial properties that
determine a triangle-dual cell decomposition. �

3. Cellular path structures

Given a piecewise-smooth path γ : [0, 1] → M , we follow the convention
of denoting γ(0) = s(γ) and γ(1) = t(γ) (the source and target of γ).

Definition 2. We say that two piecewise-smooth paths γ and γ′ in M , with
s(γ) = s(γ′) and t(γ) = t(γ′), are thinly homotopic, if the loop γ−1 · γ′ is
thin, i.e. if there is a deformation retraction of γ−1 · γ′ to s(γ′) for which
the pullback of any 2-form in M to [0, 1]× [0, 1] is zero [3]. A homotopy of
paths consisting of thinly equivalent paths is called a retracing.2

Naturally, for every thin homotopy class [γ], there is a unique inverse class
[γ]−1 under path multiplication, in the sense for any representatives γ · γ−1

and γ−1 ·γ are thinly null homotopic, namely, the thin homotopy class of the
paths γ−1(t) := γ(1−t). When defined, the multiplication of thin homotopy
classes of paths is associative, thus giving rise to the structure of a groupoid.

2A reparametrization of a path γ is a particular kind of retracing, but the latter is
considerably more general. In particular, the equivalence of piecewise-smooth paths under
retracing implies that a smooth representative for any [γ] can always be found.
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Figure 2. The cell decomposition C ε in R2.

Let us fix, for every cσ ∈ C , a point pσ ∈ cσ, which will be referred as the
base point of such cell. It readily follows from the previous definitions that
for every k-simplex σ ∈ N(U), Uσ \ {pσ} deformation retracts to ∂cσ, which
is a piecewise-smooth (n − k − 1)-sphere. We will denote the collection of
all base points in a given cσ by Bσ, and the collection of all base points in
C by BC .

Definition 3. For every cσ ∈ C , let Pσ be the path groupoid of piecewise-
smooth paths γ : [0, 1] → cσ, such that s(γ), t(γ) ∈ Bσ, modulo retracing,
and let PC be the path groupoid of piecewise-smooth paths γ : [0, 1]→M
such that s(γ), t(γ) ∈ BC , modulo retracing. In particular, each of the
groupoids Pσ contains the respective loop groups L (cσ, pσ′) = Ωcσ(pσ′)/ ∼,
consisting of classes of piecewise-smooth loops in cσ based at pσ′ for any
σ′ ⊃ σ, under retracing equivalence.3

Lemma 2. Every element [γ] ∈PC admits a minimal factorization

[γ] = [γvr ] · · · · · [γv2 ] · [γv1 ] ,

with [γvi ] ∈ Pvi for some cv1 , . . . , cvr ∈ Cn. Therefore, the path groupoid
PC is in particular generated by the local subgroupoids {Pv}cv∈Cn.

Proof. There exist multiple potential factorizations for a given path, but we
prescribe a specific one, with a minimality property, as follows. Choose any
representative γ ∈ [γ] such that its image intersects the interiors of a finite

3For any fixed σ and a pair σ′1, σ
′
2 ⊃ σ, the loop groups L

(
cσ, pσ′

1

)
and L

(
cσ, pσ′

2

)
are isomorphic under the choice of γ ∈Pσ such that s(γ) = pσ′

1
and t(γ) = pσ′

2
.
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and minimal number of n-cells c1, . . . , cr ∈ Cn (in the sense that there is no
subcollection of n-cells with the same property, although a given n-cell may
appear several times). Then, there exist subintervals [a1, b1], . . . , [ar−1, br−1]
in [0, 1], such that

γ([ai, bi]) ⊂ cvi ∩ cvi+1 ,

while for any other t ∈ [0, 1] \
(
∪r−1
i=1 [ai, bi]

)
, γ(t) lies in the interior of one of

the previous n-cells. For every i = 1, . . . , r − 1, choose the minimal subcell
cσi of cvi ∩ cvi+1 such that γ([ai, bi]) ⊂ cσi . Then, there exists another path
γ′, thinly equivalent to γ, with an additional explicit factorization into r
subpaths

γ′ = γ′r · · · · · γ′1,
and for each i = 1, . . . , r − 1, γ′i([0, 1]) ⊂ cvi , and t(γ′i) = pσi . Letting
[γvi ] = [γ′i], the claim follows. �

The factorization of elements in PC into local pieces motivates the in-
troduction of local path families as essential building blocks for the study
of subgroupoids in PC . For any pair of cells cσ and cσ′ in C such that
cσ ∩ cσ′ 6= ∅, an r-dimensional local path family F r

σ′σ, of paths γx satisfy-
ing s (γx) = pσ, and t (γx) = pσ′ , is understood as an equivalence class of
piecewise-smooth maps4

f : Dr × [0, 1]→ cσ ∪ cσ′

such that f(x, 0) = pσ and f(x, 1) = pσ′ for any x ∈ Dr, under simultaneous
retracings, i.e., piecewise-smooth homotopy maps H : Dr× [0, 1]2 → cσ such
that for every fixed x ∈ Dr, γxs (t) = H(x, s, t) defines a thin homotopy of
paths. Of special relevance will be the cases (i) when cσ, cσ′ ∈ Cn, and (ii)
when cσ′ ⊂ cσ.

There is a special class of local path families we are interested in, which
will be called cellular path families, and that will be considered exclusively
henceforth. Given a pair of cells such that cσ ∩ cσ′ 6= ∅ as before, we
will require the path family Fσ′σ to satisfy additionally that there is a
bijection between Fσ′σ and cσ∩cσ′ ; in particular, it follows that dim Fσ′σ =
dim cσ ∩ cσ′ . Examples of such families can be constructed if one considers
a pair of diffeomorphisms

ψσ : Dk → cσ and ψσ′ : Dk′ → cσ′

such that ψσ′(0) = pσ and ψσ(0) = pσ′ . The path γxσ′σ in the family Fσ′σ,
corresponding to x ∈ cσ ∩ cσ′ is constructed as follows. Let γxσ and γxσ′ be
the respective images in cσ, cσ′ under ψσ and ψσ′ , of the linear segments in
their unit ball domains, starting from 0, and such that t (γxσ) = t

(
γxσ′
)

= x.

Then, γxσ′σ =
(
γxσ′
)−1 · γxσ . In the special case when cσ′ ⊂ cσ and x = pσ′ ,

we will simply denote γxσ′σ as γσ′σ.

4The paths in the smooth family are defined by decreeing γx(t) = f(x, t) for every fixed

x ∈ Dr.
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Remark 4. The cellular path families defined before satisfy the following
fundamental property. For any k′′-subcell cσ′′ ⊂ cσ ∩ cσ′ , k′′ > 0, consider a
choice of cellular path families Fσ′σ, Fσ′′σ, and Fσ′′σ′ . Whenever x ∈ cσ′′ ,
we can induce the local factorization of thin homotopy classes

(3.1) [γxσ′σ] = [γxσ′′σ′ ]
−1 · [γxσ′′σ] ,

with
[
γxσ′′σ

]
∈ Fσ′′σ,

[
γxσ′′σ′

]
∈ Fσ′′σ′ , which could be written symbolically

as
Fσ′σ|cσ′′ = F−1

σ′′σ′ ·Fσ′′σ,

and which in particular applies in the case when cσ′′ ⊂ cσ′ ⊂ cσ. There are
several types of collections of fundamental cellular path families, connecting
all base points in the elements of C , that will be important for us. The
simplest of such is given in terms of a collection

Fmin = {Fvw}cv ,cw∈Cn, cv∩cw 6=∅ ,

where for every admissible pair {v, w}, the elements in the families Fvw and
Fwv are related as

[γxwv] = [γxvw]−1 .

Any element Fvw ∈ Fmin acquires the structure of an (n − 1)-dimensional
cell in PC , which follows from the bijective correspondence with the closed
cell cv ∩ cw, and generates an (n − 1)-dimensional topological subgroupoid
Pmin ⊂ PC , the minimal cellular path subgroupoid containing the fami-
lies in the collection Fmin. Upon a choice of an additional factorization of
the families Fvw = F−1

τv ·Fτw, where cτ = cv ∩ cw, the minimal path sub-
groupoid can be further factored into a larger (n−1)-dimensional topological
subgroupoid

Pmin ⊂Pmin’ ⊂PC ,

namely, the minimal subgroupoid of PC containing the factored families
{Fτv}cv∈Cn,cτ∈Cn−1, cτ⊂cv . In general, if we consider an arbitrary collection

of cellular path families,

F = {Fσ′σ}cσ ,cσ′∈C ′, cσ∩cσ′ 6=∅

indexed by an arbitrary cellular subcomplex C ′ of C , then, there is an
induced path subgroupoid PF ⊂ PC generated by all of the cellular path
families in F. In the case when, moreover, C ′ = C , we will refer to the
family and the path subgroupoid induced by F as complete, and PF contains
a minimal path subgroupoid Pmin ⊂PF, the core of PF. In particular, in
accordance with lemma 2, any element in PF may be factored as a finite
product of elements of the cellular path families Fσ′σ. It is important to
remark that although for different cells cσ′1 , cσ′2 ⊂ cσ such that cσ′1 ∩ cσ′2 6= ∅,
the families Fσ′1σ

and Fσ′2σ
are disjoint, the subcells in their boundaries

corresponding to cσ′1 ∩ cσ′2 may be identified by means of multiplication by
the “bridging” paths[

γxσ′1σ

]−1
·
[
γxσ′2σ

]
,

[
γxσ′2σ

]−1
·
[
γxσ′1σ

]
,
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where x ∈ cσ′1 ∩ cσ′2 . By definition, all of the cells determined by the family
F may be regarded as smooth cells in PC .

We can summarize the construction that we have introduced in remark 4
as the following lemma.

Lemma 3. A triangle-dual cellular decomposition C of M , together with a
choice of a collection of cellular path families

F = {Fσ′σ}cσ ,cσ′∈C ′, cσ∩cσ′ 6=∅

parametrized by an arbitrary cell subcomplex C ′ ⊂ C , defines a topological
subgroupoid PF of the path groupoid PC , generated by closed cells in cor-
respondence with the cellular path families Fσ′σ, for cσ, cσ′ ∈ C ′ such that
cσ ∩ cσ′ 6= ∅. The paths [γσ′′σ] corresponding to cσ′′ ∈ C0 such that cσ′′ ⊂ cσ
for cσ ∈ C ′, determine a discrete subgroupoid P0

F ⊂PF.

4. Cellular parallel transport maps

Definition 4. Let G be a Lie group. A smooth cellular parallel transport
map, relative to a choice of cellular decomposition C of M , is a groupoid
homomorphism

PTC : PC → G,

such that, for any choice of local path family Fσ′σ, the induced map

gσ′σ : cσ ∩ cσ′ → G

that results from the evaluation of PTC in Fσ′σ, is continuous, and its
restriction to any subcell cσ′′ ⊂ cσ ∩ cσ′ is smooth. We say that two cellular
parallel transport maps PTC and PT′C are equivalent if for any cσ ∈ C there
is an element gσ ∈ G such that

PT′C ([γ]) = gσ2PTC ([γ])g−1
σ1

for any [γ] ∈PC with s(γ) = pσ1 , and t(γ) = pσ2 .

Remark 5. Technically speaking, there is a slightly more general way to de-
fine a smooth cellular parallel transport map, by replacing G with another
grupoid in the defining homomorphism. Namely, consider a groupoid GM ,
which to every point x ∈M , assigns a G-torsor Px, and to every morphism
x → y, x, y ∈ M , assigns a G-equivariant map Px → Py, that is, a covari-
ant functor from M , thought of as a category, to the category of G-torsors.
We could then define a general parallel transport map as a groupoid homo-
morphism PT : PM → GM , where PM is the full path groupoid in M ,
satisfying an analogous smoothness condition. As we will see later, such ho-
momorphism would allow to define a principal G-bundle P →M . Moreover,
the specialization to definition 4 will provide a collection of trivializations
on the fibers over the base points of the elements in C .
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It follows as a consequence of lemma 2, that a smooth cellular parallel
transport map is equivalent to a collection of groupoid homomorphisms

{PTσ : Pσ → G}cσ∈C ,

compatible in the sense that for any τ ⊂ σ and [γ] ∈ Pσ ⊂ Pτ , it follows
that PTτ ([γ]) = PTσ([γ]), and satisfying a suitable smoothness condition.
We may consider the former, or a collection of the latter, whenever it is
more convenient.

Remark 6. A cellular parallel transport map PTC allows us to define a
collection of principal G-bundles πσ : Pσ → cσ for every cσ ∈ C . Let Ps

σ

be the path space of thin homotopy classes of piecewise-smooth paths in cσ
whose source is pσ′ , for any σ′ ⊃ σ. Let

(4.1) Pσ = Ps
σ ×G/∼PT

where two pairs ([γ], g) and ([γ′], g′) are related if t(γ) = t(γ′) and

g′ = PTσ

([
γ′
]−1 · [γ]

)
g.

The projection of a class [γ, g] onto M is simply defined as [γ, g] 7→ t(γ),
determining a map πσ : Pσ → cσ. Moreover, there is a global right G-action
on Pσ, defined as [γ, g′] · g = [γ, g′g]. For every σ′ ⊃ σ, there is a special
point bσ′ ∈ π−1

σ (pσ′), determined by simply considering the classes [pσ′ , e],
where, by a slight abuse of notation, [pσ′ ] represents the class of the constant
path at pσ′ . Consequently, there is a identification of the fiber π−1

σ (pσ′) with
G.

Remark 7. A smooth and global cellular trivialization can be given for each
principal G-bundle πσ : Pσ → cσ. This can be seen by considering, similarly
to remark 4, a smooth family of paths F s

σ ⊂Ps
σ with source pσ, in bijective

correspondence with cσ, with bijection determined by the path target map

γxσ 7→ t (γxσ) = x (for instance, by taking any diffeomorphism ψσ : Dk → cσ,
for every cσ ∈ Ck, 1 ≤ k ≤ n, such that ψσ(0) = pσ, and the collection of

paths {γx} in Ps
σ, consisting of the images of linear segments in Dk with

source at 0). This way, we get a bijection

Ψσ : cσ ×G→ Pσ, (x, g) 7→ [γx, g] ,

which defines a smooth structure of manifold with boundary on Pσ, and a
trivialization as a smooth principal G-bundle over cσ.

Since whenever σ ⊃ τ , we have that Ps
σ ⊂ Ps

τ , we can construct a
smooth bijection Pσ 7→ Pτ |cσ by restriction, and therefore, the collection of
principal G-bundles {Pσ}cσ∈C can be glued into a single bundle π : P →M ,
which could also be constructed as a quotient similar to (4.1), in terms of
the full path space Ps

C of all thin homotopy equivalence classes of piecewise-
smooth paths with source an arbitrary pσ in M , and projection π defined
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in a similar way. As before, such bundle would come with a preferred set of
points {bσ ∈ π−1(pσ)}cσ∈C , which we will denote by EC . Thus,

π (EC ) = BC .

It is possible to give a more straightforward construction of the principal G-
bundle P by means of local trivializations and transition functions. Consider
an arbitrary complete collection of path families {F s

σ}cσ∈C , where F s
σ =

{γxσ : x ∈ cσ} as in remark 7. Then, whenever τ ⊂ σ, the identity

[γxτ , g] = [γxσ , g
′]

for any x ∈ cσ ⊂ cτ , together with the corresponding trivializations, allows
us to express g′ = gστ (x)g for some gστ (x) ∈ G. We can explicitly write

(4.2) gστ (x) = PTC

(
[γxσ ]−1 · [γxτ ]

)
.

Moreover, if the collection of path families {F s
σ} are changed to any other

given one, the elements gστ (x) would transform as

gστ (x) 7→ gσ(x)gστ (x)gτ (x)−1,

for some well-defined smooth functions gσ : cσ → G and (gτ : cτ → G) |cσ .

Definition 5. The glueing maps induced from a cellular parallel transport
map PTC and a complete collection of cellular path families F, for a flag
cσ ⊂ cτ in C ,5 are the gστ : cσ → G defined above. Clearly, the glueing
maps satisfy the factorization property

(4.3)
(
gστ |cσ′

)
= g−1

σ′σ · gσ′τ
whenever τ ⊂ σ ⊂ σ′. The clutching maps, or skeletal transition functions,
for a minimal collection Fmin (remark 4), are the maps of the form

(4.4) hvw(x) = PTC ([γxvw]) = g−1
τv · gτw, [γxvw] ∈ Fvw

for any x ∈ cv ∩ cw, where v, w ⊂ τ , for some cτ ∈ Cn−1.

Clearly, the clutching maps satisfy the relation hwv = h−1
vw. Moreover,

when cyclically oriented triples are taken into account (remarks 2 and 3),
whenever cv1 ∩ cv2 ∩ cv3 6= ∅, and (2.2) is satisfied for cσ ∈ Cn−2, these maps
satisfy the cocycle condition

hv1v2hv2v3hv3v1 |cσ = e.

As we will see in section 5, the maps {hvw : cτ → G}v,w⊂τ, cτ∈Cn−1 play the
role of transition functions for the principal bundle P . Indeed, it is easy
to verify that they transform as transition functions under equivalence of
cellular parallel transport maps. The latter is stated in precise terms in the
next proposition.

5When complete cellular path families are considered, it is enough to define the glueing
maps over flags of length 2 in C , as any other glueing map could be induced from those.



14 MENESES AND ZAPATA

Remark 8. A horizontal lift to P , for every path γ : [0, 1]→M and a choice
of initial condition [γ′, g] ∈ π−1(γ(0)) can be canonically constructed from
the cellular parallel transport map PTC . Namely, horizontal lifts can first
be defined if we take any path γ : [0, 1]→M and an initial condition [γ′, g],
where [γ′] ∈ Ps

C . Then by the independence under reparametrization, a
path λ(γ) : [0, 1]→ Pσ can be defined as

[λ(γ)](ε) =
[(
γ · γ′

)
|[0,(ε+1)/2], g

]
,

for ε ∈ [0, 1], with source s(λ(γ)) = [γ′, g], satisfying π ◦ λ(γ)(ε) = γ(ε).
Horizontal lifts may also be constructed as an iteration of local steps, if we
recall the factorization of a class of piecewise smooth paths in M in lemma
2. The local cellular horizontal lifts on each cσi , i = 1, . . . , r, together with
an iteration of subsequent initial conditions, determines the full horizontal
lift of γ to P .

Proposition 1. Let us fix a triangle-dual cellular decomposition C in M .

(i) If two different cellular parallel transport maps PTC and PT′C are
equivalent, then there is a set of constants {gσ}cσ∈C , in such a
way that the glueing maps {gσ′σ}cσ∩cσ′ 6=∅ and {g′σ′σ}cσ∩cσ′ 6=∅, induced

from a fixed choice of complete cellular path families F = {Fσ′σ},
are related as

g′σ′σ(x) = gσ′ · gσ′σ(x) · g−1
σ .

(ii) If the choice of F is changed, then there is a set of smooth maps
{gσ(x) : cσ → G}cσ∈C , in such a way that the maps {gσ′σ}cσ∩cσ′ 6=∅
induced from PTC transform pointwise as

gσ′σ(x) 7→ gσ′(x)gσ′σ(x)gσ(x)−1.

Proof. (i) is a straightforward consequence of definition 4. Namely, the value
of gσ′σ(x) (and similarly for the value g′σ′σ(x)), for an arbitrary x ∈ cσ ∩ cσ′ ,
is equal to PTC

([
γxσ′σ

])
. (ii) has been discussed already. It should be

remarked that the proposition applies in particular to the clutching maps
hvw = gvw. �

In fact, it will turn out that only the homotopy type of the functions
{gσ′σ}, in a suitable sense, will be relevant to determine an equivalence class
of principal G-bundles on M . Such notion of homotopical cellular bundle
data, characterizing a principal bundle with trivializations over C , up to
equivalence, is axiomatized in definition 10.

Remark 9. It is also possible to construct an honest system of transition
functions for the principal bundle π : P → M if each of the local bundles
Pσ is constructed instead over the corresponding open set Uσ, by extending
the spaces Ps

σ to consist of paths belonging to Uσ (and not only to cσ), and
repeating the previous constructions verbatim.



THE BUNDLE OF A LATTICE GAUGE FIELD 15

Finally, we remark that the notion of a cellular parallel transport map,
which we have axiomatized before, together with the horizontal lift property
described in remark 8, implies the existence of an equivalence class of smooth
connections in the principal G-bundle P , under the relation determined by
the action of the group of bundle automorphisms covering the identity map
in M , and acting as the identity over the fibers {π−1(pσ)}cσ∈C , which we
will refer to as restricted gauge transformations.

We summarize our findings in the form of a theorem. We have provided
a rigorous proof of theorem 2 in [21], which is a cellular analog to Barrett’s
reconstruction theorem [3]. Reformulated in our terminology, the statement
is the following.

Theorem 1 (Reconstruction theorem). Let M be an oriented n-manifold,
equipped with a triangle-dual cellular decomposition C , and G a Lie group.
There is a bijective correspondence

G-valued cellular
parallel transport

maps PTC in M , up
to equivalence

↔


smooth principal G-bundles P →M
with a choice of fiber points EC , up to
equivalence, and a smooth connection

up to restricted gauge equivalence


and moreover, for any cellular parallel transport map PTC with induced
principal G-bundle P , there is an injective correspondence{

Path families F s
σ ,

for cσ ∈ C

}
↪→
{

Local trivializations of
P over cσ, for cσ ∈ C

}
We will finish the present section with definition 8, the main concept on

which the rest of the article will be built on. Such definition is cemented in
the following couple of definitions regarding discrete topological structures
in the path groupoid PC , and provides a justification for the insufficiency of
the standard lattice gauge theory (LGT) data to capture the global topology
of a principal G-bundle.

Definition 6. A cellular network Γ in a triangle-dual cellular decomposition
C of M , relative to a collection of cell base points BC = {pτ ∈ cτ}cτ∈C , is
a collection of nonintersecting paths γστ ⊂ cτ for every cτ ∈ C , and every
0-cell cσ = pσ ∈ ∂cτ , joining pτ and pσ. We will denote by P0

Γ the discrete
groupoid of the path groupoid PC generated by a cellular network Γ, or by
P0

F if Γ is induced by a complete collection of cellular path families F.

Definition 7. A standard lattice gauge field, relative to a cellular parallel
transport map PTC and a cellular network Γ = {γστ}pσ∈cτ , cτ∈C , is an as-
signment of a group element PTC ([γστ ]) for every path γστ , or equivalently,
a groupoid homomorphism PT0

Γ : P0
Γ → G.

Definition 8. Let M be an oriented n-dimensional manifold, n ≥ 2, with
a triangle-dual cellular decomposition C , a complete collection F of cellular
path families (remark 4), and its induced path subgroupoid PF. By an
extended lattice gauge field, we mean an equivalence class of cellular parallel
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transport maps {PTC }F, where PTC ∼ PT′C if their restrictions to the path
subgroupoid PF ⊂PC are homotopic, relative to a fixed choice of standard
lattice gauge field over its discrete subgroupoid P0

F.

Remark 10. In fact, the definition of an extended lattice gauge field does
not require to completely fix a specific collection of cellular path families
F, since any other collection F′ whose induced discrete subgroupoid P0

F′

coincides with P0
F would determine the same homotopy class of cellular

parallel transport maps, i.e., {PTC }F = {PTC }F′ . In such case, the path
subgroupoids PF and PF′ are smoothly homotopic, and by definition, there
is a 1-1 correspondence between smooth homotopies of subgroupoids PF

fixing P0
F and smooth homotopies of collections of cellular path framilies

F with common, fixed paths connecting base points to 0-boundary cells.
Since there is only one such homotopy class for every pair of intersecting
cells cσ, cσ′ ∈ C , we could think of the homotopy class of path subgroupoids
{PF}, relative to a fixed choice of discrete subgroupoid P0

Γ, as an intrinsic
object associated to C and P0

Γ. Hence, an extended gauge field is also an
intrinsic object, depending only of C and a choice of standard lattice gauge
field PT0

Γ.

5. Extended lattice gauge fields and principal bundles

Let us now assume for simplicity that G is a connected Lie group. The
extra complications of the general case are easy to sort out, as the connected
component of the identity G0 is normal in G, and π0(G, e) ∼= G/G0.

We have seen that a special characteristic feature that distinguishes a
triangle-dual cellular decomposition C on an oriented n-manifold M , is that
every triple {cv1 , cv2 , cv3} ⊂ Cn intersecting nontrivially, determines a triple
{cτ1 , cτ2 , cτ3} ⊂ Cn−1 and a unique cσ ∈ Cn−2, together with a collection of
gapless flags of oriented cells

(5.1)

cv1
⊂ ⊃

cτ3 ⊃ cσ ⊂ cτ2
⊃

⊂ ⊂
cv2 ⊃ cτ1 ⊂ cv3

a structure that is invariant under index permutations (remarks 2 and 3),
and conversely, such cσ, together with an additional choice of orientation,
determines the triples {cv1 , cv2 , cv3} and {cτ1 , cτ2 , cτ3}, up to permutations
of the indices. An orientation of cσ corresponds to a choice of gapless flag
in the collection, up to the action of the alternating group A3 of cyclic
permutations. An arbitrary collection of clutching maps, relative to C ,

{hvw}cv∩cw 6=∅, cv ,cw∈Cn

must satisfy a similar invariance property under a suitably defined S3-action,
for every triple of n-cells as above, when the corresponding triple of maps
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are restricted to their common (n − 2)-cell closure cσ. Such S3-action can
be described as follows. There is an action of S3 on G×G×G, prescribed
on a choice of two generators in the following way: for the (even) 3-cycle
(123), (123) · (g1, g2, g3) = (g3, g1, g2), and for the (odd) transposition (12),
(12) · (g1, g2, g3) = (g−1

2 , g−1
1 , g−1

3 ). Now, consider the multiplication map

TG : G×G×G→ G, (g1, g2, g3) 7→ g1g2g3,

let VG = T−1
G (e), and denote by pri the projections from G×G×G into the

ith factor. In particular, it readily follows that VG is invariant under the S3-
action defined before, and that VG ∼= G×G under the projections pri × prj
to any pair of distinct i, j ∈ {1, 2, 3}. The previous action is faithful, and
we will refer to it as the triadic action for the group G.

Consider now any triple of n-cells {cv1 , cv2 , cv3} as before, together with
its collection of clutching maps, which is parametrized by the ordered triples
(ijk), i, j, k ∈ {1, 2, 3}, i 6= j, k 6= i, j. Define the maps

hijkσ :=
(
hvivj |cσ

)
×
(
hvjvk |cσ

)
× (hvkvi |cσ) : cσ × cσ × cσ → G×G×G

which satisfy that their restriction to the diagonal ∆(cσ × cσ × cσ) lies in
VG. The fact that the labeling in the triple of n-cells is actually arbitrary is
equivalent to the fact that the S3-action on the set of maps{

hijkσ

}
given by index permutations, is determined by postcomposition with the
triadic action on their respective images. Thus, we can, and we will, fix an
arbitrary labeling on each intersecting triple of n-cells.

Definition 9. A continuous map h : cτ → G is said to be cellularly-
smooth if its restriction to any subcell cσ ⊂ cτ is smooth. For any triple
{cv1 , cv2 , cv3} ⊂ Cn as in (5.1), we say that two triples of cellularly-smooth
maps

(hv1v2 , hv2v3 , hv3v1), (h′v1v2 , h
′
v2v3 , h

′
v3v1) : cτ3 × cτ1 × cτ2 → G×G×G

whose restriction to the diagonal ∆(cσ × cσ × cσ) lies in VG, are cellularly
equivalent if there is a homotopy of cellularly-smooth maps

(hv1v2(t), hv2v3(t), hv3v1(t)) : cτ3 × cτ1 × cτ2 × [0, 1]→ G×G×G
between them, whose restriction to ∆(cσ×cσ×cσ) lies in VG for all t ∈ (0, 1).

The following definition is the cornerstone that allows us to recast the
notion of an equivalence class of principal G-bundles in terms of cellular
homotopies.

Definition 10. Let M be an oriented n-dimensional manifold, n ≥ 2, and
C a triangle-dual cellular decomposition of it. By a choice of homotopi-
cal cellular bundle data D , relative to C , we mean an equivalence class of
collections of cellularly smooth maps[

{hvw : cτ → G}v,w⊂τ, cτ∈Cn−1

]
,
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such that for each for each triple {cv1 , cv2 , cv3} ⊂ Cn intersecting nontrivially,
the restriction hv1v2 × hv2v3 × hv3v1 |∆(cσ×cσ×cσ) lies in VG. Two collections
are equivalent if for any triple {cv1 , cv2 , cv3} ⊂ Cn intersecting nontrivially,
the corresponding triples of maps are cellularly equivalent.

Remark 11. We have excluded the case n = 1 in definition 10, since the
notion of bundle data is vacuous in such case. Such omission is irrelevant,
since principal bundles are always trivial over any 1-dimensional smooth
manifold, at least when G is connected.

The homotopical data of definition 10 is equivalent to an equivalence
class of principal G-bundles: a proof of this fact is provided in theorem 5 in
appendix B. The relevance of this characterization of an equivalence class
of principal G-bundles comes from the fact that it is suited to the study
of the cellular parallel transport maps of section 4, leading us to define
a finer set of homotopical data, equivalent to the extended lattice gauge
theory (ELGT) data of definition 8, giving rise to sufficient conditions to
capture the homotopy type of all cellular parallel transport maps yielding
isomorphic principal G-bundles. Such data is presented in theorem 2, and
can be described as the result of dissecting a homotopy class of collections
of clutching maps, relative to a fixed set of values over all 0-cells in C ,
and which also determine a well-defined collection of homotopical cellular
bundle data. The missing step to establish such characterization is the
glueing mechanism, which we now describe in lemma 4. For a finite subset
X ⊂ Sk and a map g0 : X → G, let

[
Sk, G, g0

]
denote the space of homotopy

classes of piecewise smooth maps g : Sk → G such that g|X = g0.

Lemma 4. Let C be a triangle-dual cellular decomposition of the k-sphere
Sk. If any cτ ∈ Ck has assigned a homotopy class of cellularly smooth maps
[gτ : cτ → G] whose values at any 0-cell cσ′′ are fixed, and such that for
any cτ1 , cτ2 ∈ Ck with cσ = cτ1 ∩ cτ2 6= ∅, we have that [gτ1 |cσ ] = [gτ2 |cσ ] as
homotopy classes relative to the 0-cells in cσ, then the classes {[gτ ]}cτ∈Ck

can be glued into a well-defined element [g] ∈
[
Sk, G, g0

]
, with g0 : C0 → G

the induced fixed map on 0-cells.

Proof. Upon introducing the glueing mechanism, which is the fundamental
step to integrate neighboring classes of cellularly equivalent maps to a new
class over the union of their domains, and then repeating it as many times as
necessary, it is possible to obtain an honest homotopy class in πk(G, gτ (cσ′′)).
Such procedure will finish after a finite number of steps.

Consider an arbitrary k-cell, which we denote cτ1 , together with all k-
cells neighboring cτ1 , that is, the cτ ′ ∈ Ck such that cτ1 ∩ cτ ′ 6= ∅, which can
also be labeled as cτ2 , . . . , cτm1

. The first step of the glueing procedure is
to construct a class of cellularly equivalent maps defined over the closed set

∪m1
i=1cτi . Such set is either homeomorphic to the closed disk Dk, to Sk minus

a finite number of open disks, or to Sk, and has an induced orientation. We
will consider each case, as the first one eventually leads to the last two.
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Let us first assume that ∪m1
i=1cτi is a closed disk in Sk. By hypothesis,

for any pair {cτ1 , cτi} with cτ1 ∩ cτi = cσ1i , the induced classes [gτ1 |cσ1i ]
and [gτi |cσ1i ] coincide. Since there are no local obstructions over multiple

intersections, we may choose representatives such that gτ1 |cτ1i = gτi |cτ1i , and
moreover, we can apply the same principle to all intersections cτij = cτi∩cτj ,
2 ≤ i, j ≤ m1, we may also assume that gτi |cτij = gτj |cτij . Hence, altogether,

the representatives gτ1 , . . . , gτm1
glue to define a piecewise-smooth function

on ∪m1
i=1cτi , and hence induce a class of cellularly equivalent maps on ∪m1

i=1cτi .
We now add all k-cells cτ ′′ intersecting nontrivially with ∪m1

i=1cτi , and repeat
the previous procedure, until the complementary k-cells do not intersect
pairwise. Then, the resulting set must be Sk minus a finite number of open
disks. Call the remaining cells cτf1 , . . . , cτfl . Upon ordering the closures of

(k − 1)-cells cσ in the boundary of each cτfj , there is a representative gτfj
in its class whose values at each cσ coincide with the boundary values of
the previously constructed g. This way, we obtain a piecewise-smooth map
g : Sk → G, up to piecewise-smooth homotopy fixing the values at every
0-cell, whose restriction to any k-cell recovers the starting homotopy classes.

It remains to check that the previous procedure is independent of the
choice of k-cell in Sk at every step. Repeat the procedure with any other
choice of k-cells at every step, and call g′ any map constructed in such a way.
Since g′ attains the same values than g at any 0-cell, and by hypothesis, the
restriction of g′g−1 : Sk → G to any of the k-cells of C would determine a
trivial cellular homotopy class, it follows that the homotopy class of g′g−1,
as an element in πk(G, e), must be trivial. Then, in particular, it follows
that [g′] = [g] as elements in

[
Sk, G, g0

]
. �

Theorem 2 (Dissection of extended lattice gauge fields). An extended lat-
tice gauge field {PTC } on (M,C ) is equivalent to a standard lattice gauge
field PT0

Γ : P0
Γ → G, together with a homotopy class of collections of glueing

maps {{gστ}cσ⊂cτ } defined in (4.2), with fixed values at 0-cells prescribed by
PT0

Γ. More explicitly, an extended lattice gauge field is equivalent to PT0
Γ

and a map which assigns, to every flag cσ ⊂ cτ in C , cσ /∈ C0, the following
collection of local homotopy data of glueing maps:
(a) To every 0-subcell cσ′′ ⊆ cσ, a group element

gστ (pσ′′) = PT0
Γ

(
[γσ′′σ]−1 · [γσ′′τ ]

)
∈ G,

(b) More generally, to every k-subcell cσ′′ ⊆ cσ, k > 0, an extension class
of maps [gστ |cσ′′ ] from ∂cσ′′ to cσ′′, given the inductive boundary homotopy

constraint in
[
Sk−1, G, g∂cσ′′

]
, when k ≥ 2,6

[
gστ |∂cσ′′

]
=

 ∑
{σ′′′∈Ck−1 |σ′′′⊃σ′′}

gστ |cσ′′′

 ,
6The sum in the second term of the equality denotes the glueing of homotopy classes

of cellularly smooth maps to Sk−1 from lemma 4, for the map g∂cσ′′ of values at 0-cells.
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which is regarded to be trivial in the free homotopy class it spans. Moreover,
the assignment is such that whenever σ′ ⊃ σ ⊃ τ , the compatibility condition

gσ′τ (pσ′′) = gσ′σ(pσ′′) · gστ (pσ′′),

is satisfied at every 0-cell cσ′′ ⊂ cσ′, and more generally, the compatibility
condition [

gσ′τ |cσ′′
]

=
[(
gσ′σ|cσ′′

)
·
(
gστ |cσ′′

)]
, 7

is satisfied at every k-cell cσ′′ ⊆ cσ′, k = 1, . . . ,dim(cσ′).

Proof. Consider an arbitrary extended lattice gauge field {PTC }. Each class
representative PTC induces a collection of glueing maps {gστ}, as the result
of evaluating PTC at the family Fστ . All the values gστ (pσ′′) at any 0-cell
cσ′′ for a given cσ ⊂ cτ coincide, as they correspond to the evaluations of
PT0

Γ at the elements
[
γ−1
σ′′σ

]
· [γσ′′τ ] in the discrete groupoid P0

Γ. Hence,
the homotopy class {PTC } is equivalent to a homotopy class of collections
of glueing maps {{gστ}cσ⊂cτ } with fixed values over C0. The disection of
{PTC } as relative extension homotopy classes with fixed values over 0-cells
is then straightforward. The restriction of the class representatives gστ to
any subcell cσ′′ determines local homotopy classes of maps over cσ′′ relative
to the 0-cells in its boundary, that can be factored as a necessarily trivial
boundary homotopy class over ∂cσ′′ , together with an extension class to the
interior cσ′′ . Clearly, the classes associated to (k − 1)-cells cσ′′′ in ∂cσ′′ , for
any given k-cell cσ′′ , glue according to lemma 4 to a trivial class over ∂cσ′′ .
The homotopical data obtained this way clearly satisfies the compatibility
conditions stated above.

The converse is verified in a similar way: as a consequence of lemma 4,
given a collection of homotopy classes of extension maps to cσ′′ for every
flag cσ′′ ⊂ cσ ⊂ cτ , with fixed values at 0-cells, and satisfying the glueing
compatibility conditions above, we can reconstruct a homotopy class of col-
lections of glueing maps {{gστ}cσ⊂cτ }, relative to certain fixed values over
their 0-cells, which is in turn equivalent to an extended lattice gauge field
{PTC }. �

Recall that every path subgroupoid PF has a special minimal subgroupoid
Pmin generated by the cellular path subfamilies Fmin, which consist of those
paths generated by element in F, whose source and target are base points
of neighboring n-cells (remark 4). We can define larger homotopy classes
of cellular parallel transport maps {PTC }min, with fixed values over the
discrete subgroupoid P0

min = P0
F ∩Pmin, and consequently, a projection

πmin({PTC }) for every extended lattice gauge field onto the larger class that
contains it.

7The right-hand side denotes the class of products of piecewise-smooth representatives
in the relative extension classes

[(
gσ′σ|cσ′′

)]
,
[(
gστ |cσ′′

)]
, which clearly coincides with the

corresponding relative extension class of any class representative.
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Definition 11. The core of an extended lattice gauge field {PTC } is the
homotopy class of cellular parallel transport maps with respect to {Fmin}
containing {PTC }, that is, {PTC }min := πmin({PTC }).

Corollary 1. The core {PTC }min of an extended lattice gauge field {PTC }
is equivalent to a collection of secondary local homotopy data, of the following
form:
(a) To every triple of elements cv1 , cv2 , cv3 ∈ Cn such that cv1 ∩ cv2 ∩ cv3 = cσ
with cσ ∈ Cn−2 as in (5.1), we assign

(i) For every 0-cell cσ′′0 ⊂ cσ, a point hσ(cσ′′0 ) ∈ VG,

(ii) More generally, for every k-cell cσ′ ⊆ cσ, k = 1, . . . , n− 2, a relative
homotopy class of maps[

hσ|cσ′ : cσ′ → VG
]
,

with fixed values over 0-subcells, representing an extension class from
∂cσ′ to cσ′, that is determined by the inductive boundary data in[
Sk−1, VG,h∂cσ′

]
when k ≥ 2,

[
hσ|∂cσ′

]
=

 ∑
{cσ′′∈Ck−1 :σ′′⊃σ′}

hσ|cσ′′

 , 8

whose induced free homotopy class is trivial.

The assignment is equivariant for the permutation action of the group S3 on
the triple cv1 , cv2 , cv3 and its triadic action on VG.
(b) To every pair of elements cv, cw ∈ Cn such that cv ∩ cw = cτ with
cτ ∈ Cn−1, we assign an extension class [hvw : cτ → G] of the inductively
glued boundary class over ∂cτ to cτ , in such a way that the resulting induced
glued class [hwv · hvw] is homotopically trivial.

Proof. Readily follows from theorem 2, once we observe that there is an
the equivalence between the core of a lattice gauge field and a homotopy
class of collections of clutching maps {{hvw}cv∩cw 6=∅} with fixed values over
0-cells. When the latter are dissected over compatible triples, we obtain
the local homotopical data stated above, the first part corresponding to the
data arising from an triple of cells cv1 ∩ cv2 ∩ cv3 = cσ, while the residual
data takes the form of relative extension classes over all (n − 1)-cells with
orientation. Conversely, given any choice of such local homotopical data,
it follows from the compatibility conditions, together with lemma 4, that
the homotopy classes induced by the projections πi(hσσ′′) of the maps hσσ′′
into components, with i = 1, 2, 3, together with the extension classes [hvw],
determine a homotopy class of collections of clutching maps with fixed values
over 0-cells. �

8Here the sum denotes the glueing of homotopy classes of cellularly smooth maps
constructed in lemma 4, while h∂cσ′ is the map of prescribed values at 0-cells. The set of

such extension classes is a torsor for πk(VG, e), where e = (e, e, e) (cf. corollary 2).
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Corollary 2. For any given standard lattice gauge field PT0
Γ : P0

Γ → G,

the set of extended lattice gauge fields compatible with PT0
Γ is a torsor for

the group

GC =
∏
cσ⊂cτ

 ∏
cσ′′⊆cσ

Gσ
′′
στ


where, if cσ′′ ∈ Ck, Gσ

′′
στ
∼= πk (G, e). Similarly, the set of cores of extended

lattice gauge fields compatible with PT0
Γ is a torsor for the subgroup Hmin of

the group

HC =

 ∏
cσ∈Cn−2

 ∏
cσ′′⊆cσ

Hσ′′
σ

×
 ∏
cv ,cw∈Cn, cv∩cw 6=∅

Hvw


where, if cσ′′ ∈ Ck, k = 1, . . . , n − 2, Hσ′′

σ
∼= πk (VG, e), Hvw

∼= πn−1(G, e),
and consisting of elements whose components hvw ∈ Hvw, hwv ∈ Hwv satisfy
hwv = h−1

vw.

Proof. Fix any extended lattice gauge field {PTC } (resp. its core {PTC }min).
Consider any other extended lattice gauge field {PT′C } coinciding with
{PTC } over P0

Γ (resp., such that its core coincides with {PTC }min over
P0

min). Then, for any flag cσ′′ ⊆ cσ ⊂ cτ , the collection of products of
representatives

g′στ |cσ′′ · g
−1
στ |cσ′′ ,

for the pair of extension classes
[
gστ |cσ′′

]
and

[
g′στ |cσ′′

]
, coincides with a

homotopy class of maps over cσ′′ , whose values at any 0-cell are equal to
e, and whose values over ∂cσ′′ are homotopically trivial, and hence, can be
identified with an element in πk(G, e). A similar argument follows for the
corresponding extension classes characterizing the cores, yielding for any
flag cσ′′ ⊆ cσ with cσ′′ ∈ Ck, k = 1, . . . , n − 2, an element in πk(VG, e),
and for every pair cv, cw ∈ Cn such that cv ∩ cw 6= ∅, a pair of elements
hvw, hwv ∈ πn−1(G, e) related as hwv = h−1

vw. �

Remark 12. The set of standard lattice gauge fields for a given triangle-dual
cell decomposition C acquires the structure of a group under pointwise-
multiplication (isomorphic to GN1 , where N1 is the number of edges in the
cellular network Γ) which we may denote as G0

Γ, as a standard lattice gauge

field is understood as a groupoid homomorphism PT0
Γ : P0

Γ → G. Therefore,
corollary 2 indicates that the set of extended lattice gauge fields, for a given
triangle-dual cell decomposition C , is a torsor for the group

G0
Γ ×GC ,

and similarly, the set of possible cores of extended lattice gauge fields is
a torsor for the group Gmin × Hmin, where G0

min is the subgroup of G0
Γ

consisting of groupoid homomorphisms PT0
min : P0

min → G. Clearly, there
is an injective homomorphism G0

min ×Hmin ↪→ G0
Γ ×GC .
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Remark 13. The dissection of the core of an extended lattice gauge field in
corollary 1, or what is the same, the relative homotopy classes of clutching
maps, is strictly dependent on the fixed values over 0-cells of the latter, that
is, the a priori choice of a collection of reference points⊔

cσ∈Cn−2

{
hσ

(
cσ′′0

)
: cσ′′0 ∈ C0, σ

′′
0 ⊃ σ

}
.

Such is the basis for the contrast between an intrinsically local object (the
extended lattice gauge fields), and the global notion of cellular bundle data
representing an equivalence class of principal G-bundles: if a different choice
of reference points is made, there would still exist a corresponding relative
homotopy class of clutching maps defining an equivalent principal G-bundle,
but the new extension classes resulting from the dissection procedure may
turn out to be completely different than the previous ones. The interest in
getting a better understanding of the correspondence between the extended
lattice gauge fields and the equivalence classes of principal G-bundles is the
motivation for the following definition.

Definition 12. Two extended lattice gauge fields {PTC }, {PT′C } are said to
be cellularly equivalent if their cores (that is, their induced relative homotopy
classes of clutching maps {hvw}, {h′vw}) are cellularly equivalent.

Corollary 3. Two extended lattice gauge fields on C are cellularly equivalent
if and only if the principal G-bundles they determine are equivalent: cellular
equivalence determines a fibration Φ from the set of extended lattice gauge
fields onto the set of equivalence classes of principal G-bundles. The core of
an extended lattice gauge field is the minimal local homotopy data (relative
to C ) extending a standard lattice gauge field that is necessary to reconstruct
a principal G-bundle P →M , up to equivalence.

Having understood the way a discretization of a gauge field may lead to
recover the topology of a principal bundle, we can proceed and study the
space of restricted gauge equivalence classes9 of smooth connections A /G∗
over a given bundle P , up to equivalence. A fundamental by-product of
theorem 1 and corollary 1 is the cellular homotopy fibration

PTC 7→ {PTC }min

mapping a given cellular parallel transport map to the core of the extended
lattice gauge field it induces. The cellular homotopy fibration then partitions
a given space A /G∗ into equivalence classes

A /G∗ =
⊔

K ∈Φ−1({P})

(A /G∗)K ,

parametrized by the different cores K = {PTC }min that define the bundle
equivalence class supporting A /G∗.

9That is, equivalence under gauge transformations whose value over the fibers of every
base point in M is the identity. G∗ is the space of such gauge transformations.
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Definition 13. Let {P} be the underlying equivalence class of principal
G-bundles arising from a cellular parallel transport map PTC , with induced
space of connections modulo gauge transformations A /G∗, and (A /G∗)K ⊂
A /G∗ the equivalence class defined by the core K = {PTC }min. Two gauge
equivalence classes of smooth connections in P are said to be C -equivalent, or
equivalent at scale C , if (i) they lie in the same equivalence class (A /G∗)K ,
and (ii) their induced standard lattice gauge fields are the same. By a
microscopical deformation of PTC in A /G∗, relative to a cellular network
in (M,C ), we mean a smooth path in (A /G∗)K preserving C -equivalence,
whose value at 0 corresponds to PTC .

Altogether, we have constructed a series of fibrations that take the set
of cellular parallel transport maps over (M,C ) as a starting point. Such
fibrations could be understood diagramatically as follows:10

{
Equivalence classes of

cellular parallel
transport maps PTC

}
{

Extended lattice
gauge fields on (M,C )

}

{
Homotopical cellular

bundle data on (M,C )

}{
Equivalence classes of
principal G-bundles

}

{
Characteristic classes
of principal G-bundles

}

Induced bundle

equivalence

fibration

��

Cellular

equivalence of

clutching maps

  

Core + cellular

equivalence

fibration

��

//

Homotopy

equivalenceoo

Induced ELGT

data
++

Chern-Weil

fibration

!! }}

10So far, we have excluded the final topological fibration to the characteristic classes of
a principal G-bundle in the present work. We plan to study the realization of characteristic
classes from homotopical cellular bundle data, in the sense of the Chern-Weil theory, in a
separate publication, as such problem is fundamental for its own sake.
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A fundamental consequence of the torsor structure on the set of extended
lattice gauge fields for a given pair (M,C ), described in corollary 2, and
similarly, on the induced set of their cores, is the prescription of a collection
of isomorphic subgroups of G0

min ×Hmin ⊂ G0
Γ × GC , parametrized by the

space of isomorphism classes of principal G-bundles Ȟ1(M,G), namely, the
subgroups KC whose elements stabilize any given equivalence class {P} of
principal G-bundles (the isomorphism between any two stabilizers follows
from the torsor structure on the space of extended lattice gauge fields).
Consequently, there is a structure of a generalized homogeneous space11 on
Ȟ1(M,G),

Ȟ1(M,G) ∼=
(
G0

Γ ×GC

)
/KC ,

with respect to the fibration on the right above, defined by taking cores and
cellular equivalence on the set of extended lattice gauge fields, since there is
an induced transitive action of G0

Γ×GC on Ȟ1(M,G). We consider that the
previous transitive group actions deserve to be thoroughly studied, as they
shed new light into the spaces of isomorphism classes of principal G-bundles
on arbitrary manifolds, but the task seems to be far from trivial. Therefore,
we plan to return to it in a subsequent publication.

6. Extended lattice gauge fields in small dimensions

To suplement section 5, we provide explicit homotopical characterizations
of extended lattice gauge fields following from theorem 2 and corollary 1, for
oriented manifolds of dimensions 2, 3 and 4. In fact, such characterizations
suggest a recursive algorithm that could be implemented in the general case
to determine a set of generators for the extension classes. It is important
to keep in mind that for any Lie group G, the group π1(G, e) is abelian,
π2(G, e) is always trivial, while π3(G, e) is always torsion-free, and hence
isomorphic to Zm for some m (see [12]).
• (n = 2; oriented surfaces) This is the simplest nontrivial case. The

triangle-dual cellular decompositions are those for which at each vertex,
exactly 3 edges merge (5.1). Particular examples are the tetrahedral, cubical
and dodecahedral cellular representations of the 2-sphere. In such case, the
only flags one needs to consider take the form cτ ⊂ cv with cτ ∈ C1, and
an extended lattice gauge field is simply a sort of splitting of its core: the
latter corresponds to (i) an assignment of a parallel transport to every path

of the form [γσv]
−1 · [γσw] for any pair of 2-cells cv, cw sharing a common

boundary cτ containing a 0-cell cσ, and (ii) a collection of extension classes
[hvw] relative to their boundary values, which group together as the points
{hσ} ⊂ VG. In turn, an extended lattice gauge field corresponds to (i) an

assignment of a parallel transport to every path of the form [γστ ]−1 · [γσv],12

and (ii) a collection of extension classes [gτv] relative to their fixed (and

11In the sense that the group acting transitively is not a Lie group, but the product of
a discrete group and a Lie group.

12Observe that [γσv]−1 · [γσw] =
(
[γστ ]−1 · [γσv]

)−1 ·
(
[γστ ]−1 · [γσw]

)
.
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compatible) boundary values gτv(pσ), gτv(pσ′), cσ, cσ′ ⊂ ∂cτ . Hence, every
class representative hvw splits as g−1

τv · gτw, for a pair of class representatives
gτv, gτw. All of such extension classes can be parametrized by elements in
π1(G, e) once auxiliary choices of extension maps are made.

Figure 3. Stereographic projection of a tetrahedral cellular
decomposition of the 2-sphere, together with a cellular net-
work. Base points are indicated with the letter p. The 2-cells
are labelled with the subscripts vi, the 1-cells with τj , and
the 0-cells with σk.

In fact, more can be said in dimension 2, regarding the projection of an
extended lattice gauge field to its cellular bundle data. We can prescribe
an equivalence class of principal G-bundles by means of a “canonical form”,
under cellular equivalence, of an extended lattice gauge field. Recall that
the equivalence classes of principal G-bundles over an oriented surface S are
parametrized by π1(G, e), and correspond to homotopy classes of transition
functions for a trivialization {S \ {p},U }, where p is an arbitrary point in
S and U is a small disk containing p, after a retraction from (S \ {p}) ∩U
to a choice of some simply closed loop γ ⊂ (S \ {p}) ∩ U is made. If
we let γ be the boundary of a 2-cell cv ∈ C , p = pv, and U = Uv, we
can recover all equivalence classes by choosing any 1-cell cτ ⊂ ∂cv (such
that cτ = cv ∩ cw), choosing arbitrary elements in VG for every cσ ∈ C0,
and decreeing all extension classes of clutching maps to be trivial, except
for [hvw]. The correspondence of such data and the equivalence classes of
principal G-bundles then follows when the extension classes of clutching
maps over the 1-subcells in ∂cv are glued.
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• (n = 3) Over an oriented 3-manifold, besides the prescription of a
standard lattice gauge field, with generators corresponding to the parallel

transports of all paths
[
γσ′0σ

]
joining the base point of a k-cell cσ, k = 1, 2, 3,

and a 0-cell cσ′0 in its boundary, the compatible values at 0-cells cσ′0 for the
relative homotopy classes of glueing maps can be constructed as

gστ

(
pσ′0

)
= PT0

([
γσ′0σ

]
·
[
γσ′0τ

])
.

Then, an extended lattice gauge field can be entirely described in terms of
the flags of the form cσ ⊂ cτ and cσ ⊂ cv, with cσ ∈ C1, cτ ∈ C2, cv ∈ C3.
This is so since the relative homotopy classes [gστ ], [gσv] are determined
by a single extension to cσ, which can be parametrized by elements in the
group π1(G, e) after an auxiliary choice of extension maps is made. Then,
the extensions of a class [gτv] over the boundary 1-subcell cσ is determined
recursively from the factorization property of representatives

gτv|cσ = g−1
στ · gσv.

Then, the remaining extension class for [gτv] to the 2-cell cτ is necessarily
trivial, as a consequence of the triviality of π2(G, e).
• (n = 4) This case is also relatively easy to describe. Let cσ′ ∈ C1, cσ ∈

C2, cτ ∈ C3, cv ∈ C4. Once a standard lattice gauge field has been prescribed
in terms of a set generators as in the case n = 3, and the induced choice of
all compatible values at 0-cells for the relative homotopy classes of glueing
maps is constructed, we proceed as follows. To construct the extension
classes, the fundamental scaffolding is determined by the relative homotopy
classes [gσ′σ], [gσ′τ ] and [gσ′v], which are determined by an extension class
from ∂cσ′ to cσ′ . As before, such extension classes can be parametrized by
elements in π1(G, e), once an auxiliary choice of extension map is made. The
homotopy classes [gστ |cσ′ ] and [gτv|cσ′ ] are determined once again from the
factorization property of representatives

gστ |cσ′ = g−1
σ′σ · gσ′τ , gτv|cσ′ = g−1

σ′τ · gσ′v,

and furthermore, their extensions from ∂cσ to cσ are trivial by the triviality
of π2(G, e). To conclude, we only need to prescribe the extension of [gτv]
from ∂cτ to cτ , which can be parametrized by elements in π3(G, e) once an
auxiliary choice of extension map is made.

A minimal example that holds in the previous cases, and in fact, for
arbitrary dimensions, is the n-sphere, with a cellular decomposition induced
from thinking about it as the boundary of an (n+ 1)-simplex or an (n+ 1)-
cube. For instance, when n = 2, and S2 corresponds to the boundary of
a tetrahedron (figure 3), we can list a pair of paths for every 1-cell cτ ,
joining pτ and the 0-cells in its boundary cσ1 , cσ2 . Each of these paths gets
assigned a corresponding parallel transport PT0 ([γσiτ ]), playing the role of a
prototypical lattice gauge field, in the usual sense. Now, the previous paths

get complemented with the paths
[
γσ′0σ

]
in a cellular network, joining the
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base point of an arbitrary k-cell cσ, k ≥ 2, to a 0-cell cσ′0 in its boundary,
also getting assigned a parallel transport, and together fully determining a
standard lattice gauge field. Finally, the prescription gets completed with an
extension class of maps for every flag cσ ⊂ cτ , and every k-subcell cσ′ ⊆ cσ.
When d = 2, there is one such extension class for every flag cτ ⊂ cv with
cτ ∈ C1, and the extensions for the pairs cτ ⊂ cv and cτ ⊂ cw, such that
cτ = cv ∩ cw, are inverse to each other.

7. Pachner moves and independence of cellular decompositions

So far nothing has been said about the potential independence of our
geometric and topological constructions under changes of the underlying
triangle-dual cellular decomposition C that is required to be chosen. A
rather special feature of the category of triangle-dual cellular decompositions
on a manifold M , due to the simplicial nature of its objects, is the abundance
of morphisms that allows us to connect and compare any given pair of them,
up to dual P.L. equivalence, in a sistematic way. Namely, it was proved by
Pachner [15] that any two smooth triangulations of a manifold are related
by a sequence of the so-called Pachner moves. Let Xn+1 be an abstract
(n + 1)-simplex. By definition, we say that two different P.L. structures
∆ : |K| →M and ∆′ : |K ′| →M on a manifold M differ by a Pachner move
if there exists a pair of injective simplicial maps µ : L→ K and µ′ : L′ → K ′,
where

L =
k⋃
l=0

Xn
l ⊂ ∂Xn+1, L′ =

n+1⋃
l=k+1

Xn
l ⊂ ∂Xn+1,

for some arbitrary labeling Xn
0 , . . . , X

n
n+1 of the n-simplices in ∂Xn+1 and

0 ≤ k ≤ n, such that

(i) the map (∆′)−1 ◦∆ : |K| → |K ′| is simplicial outside |µ (L \ ∂L)|,
(ii) ∆ (|µ(L)|) = ∆′ (|µ′(L′)|),
(iii) ∆ (|µ(σ)|) = ∆′ (|µ′(σ)|) for all σ ∈ ∂L = ∂L′.

Consequently, we are left to conclude that any two triangle-dual cellular
decompositions C and C ′ of an n-manifold M are related by a corresponding
sequence of dual Pachner moves – the corresponding transformations over
the cell decompositions. Our first step towards cellular independence is to
provide an elementary description of such transformations.

Remark 14. In the previous definition of a Pachner move, the k+1 different
n-simplices of the simplicial complex L meet at a common (n − k)-face σ,
while the n − k + 1 different n-simplices of the simplicial complex L′ meet
at a common k-face σ′, dual to σ (in the case when k = 0, L = σ and σ′

is its complementary vertex v in Xn+1, and correspondingly for k = n).
Therefore, when two triangulations ∆ and ∆′ of M differ by a Pachner
move, such operation may be interpreted as the replacement of the (n− k)-
face σ by the k-face σ′ (unless k = 0, where the Pachner move consists
of a refinement of an n-simplex through the extra interior vertex v, and
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conversely for k = n), and there is a common refinement ∆′′ containing
exactly an additional 0-simplex v, corresponding to the intersection of σ
and σ′. In turn, C \ {cσ} ∼= C ′ \ {cσ′}, and the corresponding triangle-dual
cellular decomposition C ′′ contains an additional n-cell cv than C and C ′

(figure 4). The n-cell closure cv is topologically equivalent to the product
cσ × cσ′ .

Lemma 5. Any two triangle-dual cellular decompositions C and C ′ of M ,
arising from triangulations ∆ and ∆′, and related by a Pachner move as
before, are degenerations of a smooth 1-parameter family of triangle-dual
cellular decompositions {C ′′t }t∈(0,1),

lim
t→0+

C ′′t = C , lim
t→1−

C ′′t = C ′,

with C ′′t dual to ∆′′, where ∆′′ is the common refinement of ∆ and ∆′

described in remark 14.

Proof. Consider a choice of cellular decomposition C ′′ dual to the common
refinement ∆′′, in such a way that Uu = Uσ = Uσ′ , and C ′′ coincides with
C and C ′ on M \Uv. Make C ′′ correspond with C ′′1/2. Using the fact that

cv ∼= cσ × cσ′ , define a family on (0, 1/2] by letting cv
t degenerate to cσ, and

on [1/2, 1) by letting cv degenerate to cσ′ , in such a way that all cells outside
Uv remain constant, all cells neighboring ctv transform into the corresponding
cells neighboring cσ, cσ′ , and the full family over (0, 1) is smooth (figure 4).
Observe that, in particular, in the case when k = 0 (resp. k = n), one
of the two degenerations would not be present: topologically, the cellular
decompositions for t ∈ (0, 1] (resp. t ∈ [0, 1)) would be equivalent. �

Remark 15. The triangle-dual cellular decomposition C∆ that the n-sphere
acquires from its realization as the boundary of an (n+1)-simplex is actually
a triangulation of Sn, and hence self-dual (that is, isomorphic to its own
dual). An important consequence is the following geometric realization of
the dual Pachner moves in (Sn,C∆). Choose a k-cell cσ in C∆. Then,
there is a (n − k)-cell cσ′ in C∆, complementary to the interior of the star
of cσ. Upon the choice of a smooth hemisphere H in Sn separating cσ
and cσ′ , we can identify each of the two components in Sn \ H with the
open sets Uσ and Uσ′ . In fact, more can be said about the topology of the
cell degenerations: It is possible to foliate Sn \ {cσ, cσ′} as a collection of
cell subcomplexes, parametrized by (0, 1), and each isomorphic to ∂cv. Such

foliation can be extended to a foliation of the closed disk Dn+1, with the leave
Lt corresponding to ctv. This is the case since there exists a diffeomorphism

(0, 1)× cv ∼= Dn+1 \ {cσ, cσ′}.

As an immediate corollary of Pachner’s theorem and lemma 5, we obtain
the following result, which is potentially useful to find algorithmically simple
sequences of transformations between triangle-dual cellular decompositions.
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Figure 4. (A) Pachner move on a triangulated surface, with
common refinement shown (center). (B) The corresponding
degenerations on the dual cellular decomposition.

(A)

(B)

Corollary 4. Any two triangle-dual cell decompositions of M are related by
a sequence of deformations and contractions of cells preserving the triangle-
dual property.

Remark 16. In the same way that two cellular decompositions C and C ′

in a given manifold M , related by a dual Pachner move, can be thought of
as degenerations of a 1-parameter family of cellular decompositions {C ′′t },
a pair of choices of path groupoids PF and PF′ , generated by complete
families F and F′ adapted to C and C ′, may be understood as degenerations
of a 1-parameter family of path groupoids{

PF′′t

}
t∈(0,1)

resulting from a 1-parameter family of path families interpolating F and F′,
and adapted to {C ′′t }t∈(0,1). The characteristic feature of such degenerations
follows from the isomorphism of cell complexes cv = cσ × cσ′ . Namely, for
any pair of subcells cσ0 ⊂ cσ and cσ′0 ⊂ cσ′ , the subcell of cv whose closure
corresponds to cσ × cσ′ would degenerate to cσ0 or cσ′0 . Such degeneration
implies the fusion of the local path families supported over the closures of
any two subcells in cv collapsing to the same subcell in cσ (or cσ′).
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Consider a pair of triangle-dual cell decompositions C and C ′, related by
a dual Pachner move as before, and moreover, assume they coincide over
M \ Vσ = M \ Vσ′ , where Vσ (resp. Vσ′) denotes the open set in M given
as the interior of the star of cσ –the union of all cells in C (resp. C ′) whose
closures intersect cσ (resp. cσ′). Let us moreover assume that C and C ′ are
equipped with choices of extended lattice gauge fields {PTC } and {PTC ′}
coinciding over all common cells in M \ Vσ = M \ Vσ′ . Consider, as before,
a family C ′′t of triangle-dual cellular decompositions degenerating to C and
C ′, and such that for all t ∈ (0, 1), the open set Vv –the interior of the

star of ctv– equals Vσ = Vσ′ , and moreover, the restriction C ′′t |M\Vv coincides
with the restrictions C |M\Vσ and C ′|M\Vσ′ . Finally, equip such family with

a smooth family of adapted path groupoids
{

PF′′t

}
, and degenerating to

PF and PF′ .
The next definition plays the role of a generalized cellular equivalence of

extended lattice gauge fields, suited to consider smooth 1-parameter families
of triangle-dual cellular decompositions arising from a dual Pachner move
as before.

Definition 14. Two extended lattice gauge fields {PTC } and {PTC ′} as
before (that is, coinciding over all cells in M \Vσ = M \Vσ′) are called local
relatives if there exists a smooth 1-parameter family{{

PTC ′′t

}}
t∈(0,1)

,

whose restriction to C ′′t |M\Vv coincides with the respective restrictions of
{PTC } and {PTC ′} to C |M\Vσ and C ′|M\Vσ′ , and such that

lim
t→0+

{
PTC ′′t

}
= {PTC }, lim

t→11

{
PTC ′′t

}
= {PTC ′}.

Theorem 3. Let C and C ′ be two triangle-dual cellular decompositions of
M , related by a dual Pachner move, together with a pair of extended lattice
gauge fields {PTC } and {PTC ′} such that the respective restrictions of their
cores to C |M\Vσ and C ′|M\Vσ′ coincide. The principal G-bundles P and P ′

on M , induced by the cores {PTC }min and {PTC ′}min, are equivalent if and
only if {PTC } and {PTC ′} are local relatives.

Proof. The proof is straightforward, and its essence is the fact that, when
the cores of the extended lattice gauge fields are considered, or what is the
same, the relative homotopy classes of collections of clutching maps, the
notion of local relativity for a pair of extended lattice gauge fields is nothing
but a (local) specialization of the notion of cellular equivalence, adapted to
degenerating families of cell decompositions. The extra complications and
subtleties implicit in the notion of (global) cellular equivalence, present in
general, disappear, since the homotopy equivalence relation that defines it
has been confined to the (n− 1)-cells in cv and the interior of its star.

�
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8. ’t Hooft loop operators

The ’t Hooft loop operator was originally formulated in the seminal work
[20], in the context of quantum gauge theory, as an operator that could
sense non-local aspects of gauge fields. Its significance is due to the fact
that it provides a so-called “disorder parameter”, and as such, it plays an
essential role to study the phase diagram of quantum chromodynamics and
in understanding the phenomenon of quark confinement. In this section we
will study some of the topological and bundle theoretical aspects that are
relevant in the mentioned construction (cf. [18]).

In its simplest form, the ’t Hooft operation is defined on the space of
smooth, G-valued holonomy maps over a space of thin homotopy classes of
loops based at x0 ∈ M , as in [3]. Let us consider an (n − 2)-dimensional
submanifold L ⊂ M13 not containing x0, and a smooth holonomy map Hol
on (M,x0). The ’t Hoof loop operation TL is then constructed by modifying
Hol into a new holonomy map HolL on M \ L, according to the recipe

(8.1) HolL(l) = TL[Hol](l) = gN(L,l)[Hol](l),

where g ∈ Z(G) ⊂ G is an element of the group’s center that is arbitrary
but fixed, and N(L, l) denotes the linking number14 between L and l (the
linking number of these two different types of objects is well-defined, and in
fact, a topological invariant, under isotopies of l in M \ L). The previous
definition is, in fact, enough to determine the action of the operation in the
space of smooth holonomy maps on M \ L.

The main goal of this section is to use our newly developed tools, to
address the natural question of whether the principal G-bundles over M \L,
determined by PTC and TL[PTC ], are equivalent. As we will see, such is the
case, as a consequence of the connectedness ofG, but in fact, while there is no
longer a principal G-bundle structure over L ⊂M , the defect of the cocycle
condition over L turns out to be a manifestation of a more general topological
structure, known as a non-abelian bundle gerbe [2, 4]. Thus, we are led to
conclude that the natural setting to study the ’t Hooft operation is not
the category of principal G-bundles with connection, but instead a suitable
category of non-abelian gerbes with the so-called “connective structures”.

13L will be called an “(n − 2)-loop”, or “(n − 2)-knot”, or “Dirac (n − 2)-string”,
because in its original context, it lies inside a three-dimensional (“constant time”) slice of
a four-dimensional Lorentzian manifold.

14The linking numbers N(L, l) can be calculated by means of the so-called Seifert
hypersurfaces S, having L as boundary, as the intersection number of S and l, as the
latter is independent of the choice of S, and which is defined due to the orientation in
M . The existence of such hypersurfaces for any given 1-loop L is a classical result of
Pontryagin-Frankl [6], and Seifert [19], in the cases M = S3 or M = R3, where in fact
the linking number can be prescribed in terms of the celebrated Gauss linking integral.
The definiton of the linking number can be generalized analogously to dimensions higher
than three [17]. Moreover, the linking number is invariant under thin homotopies, and
descends to the group of based loops on (M,x0), modulo thin homotopy, and hence, it
can be understood algebraically as a homomorphism from such group to Z.



THE BUNDLE OF A LATTICE GAUGE FIELD 33

Our starting point will be to extend equation (8.1) above, in order to
define the ’t Hooft operator in terms of smooth cellular parallel transport
maps instead. Namely, let us consider a triangle-dual cell decomposition C
on M , a collection of cell base points, and the corresponding path groupoid
PC . Recall that if a cellular network Γ is chosen, then from every cellular
parallel transport map PTC , we can extract the parallel transport data
along the links contained in the discrete path subgroupoid P0

Γ, and that
if a network parallel transport data is complemented with the homotopy
cellular data, extracted from a minimal collection of path families Fmin, as
in Section 4, we obtain sufficient information to characterize the bundle
structure encoded in PTC .

In order to define the ’t Hooft operation on the space of smooth cellu-
lar parallel transport maps, we will henceforth consider a pair (M,C ), and
also consider exclusively the (n− 2)-loops L that fit in the (n− 2)-skeleton
of C (or conversely, if such a choice of (n − 2)-loop L ⊂ M is made, con-
sider a triangle-dual cell decomposition C with the previous property). As
opposed to the previous definition of the ’t Hooft loop operation, we will
now restrict to fixed Seifert hypersurfaces S for L, satisfying the following
property: consider a hypersurface S0 fitting in the (n − 1)-skeleton of C ,
such that ∂S0 = L, and let S be a sufficiently small isotopy deformation of
S0, preserving the boundary constraint, such that no base point for C |M\L
is contained in S, and such that there always exists a complete collection
of path families F whose intersection numbers with S are well-defined (re-
mark 17), and coincide with the intersection numbers of S0 for all the path
families in F not involving cells in S0. We will say that S is neighboring S0.

Let us now consider a loop l that admits a factorization as a product of
paths

l = γr · · · · · γ1.

with γ1, . . . , γr ∈ PC . Indeed, it is also possible to define intersection
numbers N(S, γi), provided that each γi intersects S transversally, in such
a way that the usual linking number N(L, l) can be recovered from them.
In particular, the following formula holds

N(L, l) = N(S, l) =

r∑
i=1

N(S, γi).

Definition 15. For L an (n− 2)-dimensional submanifold of M embedded
in Skn−2(C ), S a fixed choice of Seifert hypersurface for L (i.e. ∂S = L),
neighboring some hypersurface S0 embedded in Skn−1(C ), and g ∈ Z(G) a
fixed element of the center of G, the ’t Hoof operation TL,S on a smooth
cellular parallel transport map PTC on M is defined as the cellular parallel

transport map PTL,S
C on M \ L given by the formula

PTL,S
C (γ) = TL,S [PTC ] (γ) = gN(S,γ) [PTC ] (γ).
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Observe that TL,S is well defined in PC |M\L, and when l is a loop in

PC , the parallel transports PTL,S
C (l) are independent of the choice of Seifert

hypersurface S ⊂M , and if, moreover, l = γr · · · · · γ1, then

PTL(l) = PTL,S(γr) · · · · · PTL,S(γ1),

for any Seifert hypersurface S ⊂M .

Remark 17. The ’t Hooft operation is, in principle, only defined for the
parallel transport of elements PC that do not intersect L. However, if we
now consider, for any pair cv, cw ∈ Cn such that cv ∩ cw 6= ∅, the cellular
path families Fvw defined in section 3, then, all paths γxvw with x in the
interior of cv ∩ cw would have a well-defined linking number N (S, γxvw). In
such sense, we can define the linking number for all elements in the family
Fvw (that is, even if x happens to lie in L), as an integral invariant of the
intersection cell cτ = cv∩cw, whose value is equal to 0, if cτ is not contained
in S, or 1, or −1, otherwise. We will denote such invariant as

Or (S, cvw) .

Observe that, in particular, Or (S, cwv) = −Or (S, cvw). The definition of the
invariants Or (S, cvw) is crucial, as the clutching maps were precisely defined
in terms of the path families Fvw. In particular, given a cellular parallel
transport map PTC , with induced clutching maps {hvw(x) = PTC (γxvw)},
the ’t Hooft operation induces the new collection of maps{

hL,Svw = gOr(S,cvw)hvw : cτ → G
}
,

which will be the main object of interest. As we will prove in theorem 4,
their restriction to M \ L are clutching maps, thus determining a smooth
principal bundle over M \ L. To understand the behavior of the collection{
hL,Svw

}
over L, we require to recall the notion of non-abelian gerbe. Let

(G,H, δ, α) be a cross module,15 i.e., G and H be groups, together with a
pair of homomorphisms

δ : H → G, α : G→ Aut(H),

and such that for all g ∈ G, h, h′ ∈ H,

δ (α(g)(h)) = gδ(h)g−1, α (δ(h))
(
h′
)

= h(h′)h−1.

15In what follows, we will simply consider the case when H = G is a connected Lie
group, or H = Z(G), the center of G, δ is the identity or the inclusion map, and α is the
adjoint action.
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Given an open cover U = {Uv} of M , a non-abelian bundle gerbe16 [2, 4] is
a collection of smooth maps

guv : Uuv → G, fuvw : Uuvw → H,

satisfying

(8.2) guv|Uuvw · gvw|Uuvw = δ(fuvw) · guw|Uuvw ,
and

(8.3) α (guv|Uuvwt) (fvwt|Uuvwt) · fuvt|Uuvwt = fuvw|Uuvwt · fuwt|Uuvwt .

Theorem 4. The collection of maps

(8.4)
{
hL,Svw

}
{cv ,cw∈Cn : cv∩cw 6=∅}

define a new collection of clutching maps for (M \ L,C |M\L). The two
collections of clutching maps are cellularly equivalent over M \ L,[{

hL,Svw
}]
|M\L = [{hvw}] |M\L,

thus defining the same equivalence class of principal G-bundles on M \ L.
Moreover, the collection (8.4) determines clutching maps for a non-abelian
gerbe on M .

Proof. As before, let us fix a Seifert surface S0 for L contained in Skn−1(C ),
together with a neighboring Seifert surface S. Recall that in a triangle-dual
celular decomposition C , the closure of every (n− 2)-cell cσ is equal to the
intersection of the closures of a triple of (n− 1)-cells {cτ1 , cτ2 , cτ3}. Since a

map hL,Svw differs from hvw only when the (n − 1)-cell closure cτ = cv ∩ cw
is contained in S0, and an (n − 2)-cell cσ is contained in S0 if and only if
least one cτi (but at most two) is contained in S0, the cocycle condition
will automatically hold over all (n − 2)-cells not contained in S0, the new
clutching maps are identical to the original collection over M \ S, and the
induced bundles would coincide there.

Assume now that the (n− 2)-cell cσ is contained in S0. An (n− 2)-cell in
S0 may either belong to S0 \ L or to L. In the first case, exactly two of the
(n− 1)-cells {cτi} will be contained in S0, while in the second case, exactly
one of the (n− 1)-cells {cτi} will be contained in S0.

Let us first consider a closed (n − 2)-cell cσ in S0 \ L, corresponding
to the intersection of S0 and an (n − 1)-cell cτ1 that is not in S0. The
remaining two (n−1)-cells cτ2 , cτ3 that intersect at cσ must belong to S0, and
their corresponding clutching maps would get modified. Due to the cyclic
orientation that is given to (n−1)-cells incident in cσ, the modification factor
that is introduced by the ’t Hooft operation in such pair of cells would appear

16Originally, the notion of an (abelian) gerbe was introduced by Giraud in [7] (see [8] for
a comprehensive and pedagogical introduction to the subject). The theory of gerbes has
been vastly developed over the last decades, with applications spanning over a considerably
broad variety of fields in Mathematics and Physics. Our approach to gerbes in this work
is rather rudimentary, considering only what is strictly necessary for our purposes.
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with oposite exponents. Thus, the cocycle condition would be preserved in
such case. Hence, by restriction, we obtain a collection of clutching maps
over M \ L, which determine a new principal G-bundle there.

It remains to prove that the collection of clutching maps on M\L, induced
by TL,S , is cellularly equivalent to the original collection. For this, we need
to exhibit a homotopy between each pair of maps{

hvw, h
L,S
vw

}
,

in such a way that the compatibility condition is satisfied at every t ∈ [0, 1].
Consider any path g(t) in the group with g(0) = e and g(1) = g. The
homotopy of pairs is defined in cases. When Or (S, cvw) = 1, we define

hL,Svw (t)(x) = g(t)hvw(x),

and when Or(S, cvw) = −1, we define

hL,Svw (t)(x) = hvw(x)g(t)−1.

For the two of the three (n− 1)-cells {cτ1 , cτ2 , cτ3}, whose closures intersect
in cσ and belong to S0, their associated clutching maps are modified. Now,
according to the cyclic orientation, one of such maps is modified by a factor
g(t) multiplying on the left, while the other one is modified by a factor g(t)−1

multiplying on the right. Thus, the modifications cancel, and the cocycle
condition holds for every t ∈ (0, 1). and the two collections of clutching
maps are cellularly equivalent on M \ L.

Finally, let us assume that cσ belongs to L. Then, only one of the corre-
sponding three cells {cτ1 , cτ2 , cτ3} would belong to S0, say cτ2 , and in such

case, the only map from the triple that would be modified would be hL,Sv1v3 .
Thus, the new compatibility condition for the triple reads

hL,Sv1v2 · h
L,S
v2v3 = gOr(S,cv3v1 )hL,Sv1v3 ,

hence, if we let

fL,Sv1v2v3 =

 gOr(S,cv3v1 ) if cσ ⊂ L,

e otherwise,

we conclude that the new structure that we have obtained from the ’t Hooft
operation is a collection of clutching maps for a non-abelian gerbe, with a
Z(G)-twisting supported over L: the remaining compatibility condition (8.3)
follows from the fact that the homomorphism α is trivial since g ∈ Z(G),
and moreover, an (n− 3)-cell closure

cu ∩ cv ∩ cw ∩ ct
has codimension 1 for the induced triangle-dual cell decomposition of L.
Hence, the latter is the intersection of two (n− 2)-cells in L, say cuvw, cuwt,
and at the same time, the intersection of four (n−2)-cells cuvw, cuvt, cuwt, cvwt
in M , so that cuvt, cvwt 6⊂ L. Therefore, exactly 2 of the corresponding four
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maps
{
fL,Suvw, f

L,S
uvt , f

L,S
uwt , f

L,S
vwt

}
would be trivial, namely fL,Suvt , f

L,S
vwt , while the

remaining two would provide canceling contributions in (8.3).
We could then talk about an induced isomorphism class of non-abelian

gerbes {
PL,S

}
,

induced by the ’t Hooft operation in PTC , and moreover, PTL,S
C should

correspond to a gauge equivalence class of connective structures on
{
PL,S

}
(but we will not dwell on the latter here). �

Remark 18. The previously described non-abelian gerbe structure admits
an analogous description in terms of glueing maps. Also, observe that, since
the ’t Hooft operation is trivial over parallel transport maps with values on
a connected Lie group with trivial center, it can be understood in terms of
the fibration G→ G/Z(G) as a transformation on the space of non-abelian
gerbes for G (containing in particular the space of Čech cocycles Ž1 (M,G)),

fibering over the identity in Ž1
(
M,G/Z(G)

)
.

Appendix A. Cellular decompositions on manifolds

Here we recall, for the sake of clarity and convenience, some standard
notions on cell decompositions that we will require. We refer the reader to
[11, 10] for further details.

Let M be an n-dimensional smooth manifold, assumed to be connected,
not necessarily compact, and with or without boundary. A smooth cellular
decomposition of M is defined inductively, as a disjoint union of subsets

M =
⊔
cσ∈C

cσ,

together with continuous maps φkσ : Dk → M (where Dk denotes the unit
disk in Rk), such that each φkσ|Dk is a diffeomorphism onto cσ, in such a way

that cσ is a k-dimensional cell, and moreover, φkσ

(
∂Dk

)
is a disjoint union

of cells of dimension at most k − 1. We will denote an arbitrary smooth
cell decomposition of M by C =

⊔n
k=0 Ck, where Ck denotes the collection

of k-dimensional cells in M . Similarly, the lth-skeleton of C is defined as

Skl(C ) =
⊔l
k=0 Ck.

A flag of length m + 1 ≤ n + 1 in a cell decomposition C of M is a
collection of nested cell closures cσ0 ⊂ cσ1 ⊂ · · · ⊂ cσm in M . A flag is said
to be gapless if dim cσk − dim cσk−1

= 1 for every 1 ≤ k ≤ m. A flag is
complete if its length is equal to n + 1, so that dim cσk = k. A descending
flag is defined in a similar way, by reversing the subset and cell dimension
orderings.

In the case when M is orientable, and an orientation is chosen, there is
a corresponding induced orientation in any cell cσ ∈ C , for any choice of a
gapless flag starting at cσ.
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A barycentric subdivision B(C ) of C is any cellular decomposition of M
satisfying the following property: there is a 1–1 correspondence between k-
cells in B(C ) and gapless flags of length k + 1 in C , in such a way that if
bkσ0...σk ∈ B(C )k corresponds to {cσ0 ⊂ · · · ⊂ cσk} ⊂ C , then bkσ0...σk ⊂ cσk
(this is possible since dim cσk ≥ k necessarily). Note how this definition is
built inductively. In particular, there is exactly a 0-cell b0σ ⊂ cσ in B(C ) for
every cσ ∈ C .

A smooth triangulation of M is a homeomorphism ∆ : |K| → M , where
K is an abstract simplicial complex and |K| is its geometric realization,
whose restriction to the interior of any simplex in |K| is a diffeomorphism.
We will denote by σ, τ, . . . the elements in K (called the faces of K), and
by v, w, . . . the vertices of it (in general, the maximal faces of an abstract
simplicial complex K are called its facets, and K is said to be pure if all of
its facets have the same dimension). Every triangulation has a canonically
defined barycentric subdivision B(∆).

Remark 19. The essential property that a cellular decomposition C of M
must satisfy to qualify as “sufficiently good” for our purposes (and to avoid
unnecessary patologies), is that for every k-cell cσ (k ≥ 1), ∂cσ is is a
piecewise-smooth (k − 1)-sphere (c.f. definition 10). Let us call such a
broader class of cellular decompositions spherical. Clearly, every triangle-
dual cellular decomposition is spherical (a property inherited from the P.L
structure), but the converse is not true: for instance, the hypercubical cel-
lular decompositions of Rn, determined by a lattice Λ ⊂ Rn, are spherical
but not triangle-dual, unless one consider the trivial case n = 1. It is thus
natural to inquire what special properties single out the triangle-dual cel-
lular decompositions among the former. An intuitively obvious property is
their genericity, that is, “almost all” spherical cellular decompositions are
triangle-dual.17

Lemma 6. Triangle-dual cellular decompositions are stable under small
smooth deformations. Moreover, every spherical cellular decomposition is
a degeneration of a smooth family of triangle dual cellular decompositions.

Proof. A cellular decomposition C0 would be unstable under small deforma-
tions if and only if there exists a family Cε, ε ∈ R of cellular decompositions
which are combinatorially equivalent for small ε 6= 0, and combinatorially
inequivalent from C0 (figure 5). If that is the case, then there exist at least
one family of k-cells cεσ, for some 0 < k < n, for which the limit of its clo-
sures cεσ collapses to a 0-cell c0 in C0. In particular, all 0-cells in cεσ coalesce
into c0. Over the dual cell decompositions C ∨ε , each 0-cell in cεσ corresponds
to an n-cell, and in the limit, all of these n-cells unify into the single n-cell
c∨0 . It follows that the number of (n − 1)-cells in ∂c∨0 would be larger that

17This statement and the subsequent lemma are meaningful when n ≥ 2, since for
1-dimensional manifolds, all cellular decompositions are trivially triangle-dual.
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the number of (n− 1)-cells in the boundary of any of the n-cells in C ∨ε that

are being unified into ∂c∨0 .
If C is triangle dual, then in particular C ∨ would be a triangulation of M .

By the previous argument, C cannot be a degeneration of a smooth family
of combinatorially equivalent cell decompositions Cε, otherwise, there would
be a family of n-cells in C ∨ε being unified into to the interior of an n-simplex
in C ∨, for which the number of (n− 1)-cells in its boundary (equal to n+1)
is minimal, a contradiction.

Now, consider an arbitrary spherical cell decomposition C of M . Passing
to the dual, it is always possible to construct a refinement of C ∨ which is
triangulation ∆, and whose vertices coincide with the set of 0-cells in C ∨,
that is Sk0(C ∨) = Sk0(∆). It is then clear that, since the n-cells in ∆∨

and C are in 1 − 1 correspondence, it is possible to construct a family Cε
of combinatorially equivalent cell decompositions in M , such that for every
sufficiently small ε 6= 0, Cε is equivalent to ∆∨, so by construction Cε is
triangle-dual, and such that the limit C0 coincides with C . �

Figure 5. (A) 1-cell contraction in a cellular decomposition
C on a surface. (B) The effect over the dual decomposition
C ∨.

(A)

(B)

Appendix B. The equivalence theorem

Recall that a principal bundle P can be determined over an open cover
U = {cv}v∈Cn by a Čech 1-cocycle, that is, a collection of smooth maps
gvw : Uvw → G satisfying the cocycle conditions

(B.1) gwv = g−1
vw on Uvw, guvgvwgwu = e on Uuvw,

and any two such cocycles {gvw} and {g′vw} are equivalent if there exist a
collection of smooth maps {gv : Uv → G}cv∈Cn (local gauge transformations)
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such that, over any Uvw,

(B.2) g′vw = gvgvwg
−1
w .

The cocycle condition is a statement on the 2-skeleton of the nerve N(U). In
that sense, it will turn out to be very convenient to work with triangle-dual
cellular decompositions and their associated open covers.

Theorem 5. Let M be an oriented n-manifold, n ≥ 2, together with a
triangle-dual cellular decomposition C and a compatible star-like cover U
(see remark 1). There is a bijective correspondence{

Cellular bundle data
in M , relative to C

}
←→

{
Equivalence classes of principal

G-bundles P →M trivialized over U

}
Proof. One implication is easy. Let us first consider an equivalence class of
bundles with trivialization as a Čech 1-cocycle {gvw} up to equivalence, as
described above. For any cτ ∈ Cn−1, v, w ⊂ τ , the restrictions

hvw := gvw|cτ
determine a representative of a class of cellular bundle data. This is so
since every open set Uv is contractible by definition, and hence any local
gauge transformation gv : Uv → G is smoothly homotopic to the identity.
Therefore, any equivalent cocycle {g′vw} would be homotopic to {gvw} trough
a homotopy of cocycles, inducing a corresponding cellular equivalence of
maps {hvw(t)}, t ∈ [0, 1].

Conversely, let us consider an arbitrary choice of cellular bundle data D
over C , and for each cτ ∈ Cn−1, together with a choice of orientation, fix
data representatives, in the form of maps hvw : cτ → G such that for any
cyclically oriented triples over any (n− 2)-cell closure in ∂cτ the restriction
to the diagonal ∆(cσ × cσ × cσ) of the induced triples of maps lies in VG.
Our goal is to construct maps gvw : Uvw → G such that for any cyclically
oriented triple {cτ1 , cτ2 , cτ3} ∈ Cn−1 as before, and the corresponding open
sets

Uτ1 = Uv2 ∩Uv3 , Uτ2 = Uv3 ∩Uv1 , Uτ3 = Uv1 ∩Uv2 ,

the cocycle conditions (B.1) are satisfied. The construction will be done in
two steps.

For the first step, let us consider, for every cτ ∈ Cn−1, the intersections
Uτ ∩ Skn−1(C ) (figure 6), and their subsets

Zτ = Uτ ∩

 ⋃
τ ′∈C τn−1

cτ ′

 ,

where C τ
n−1 = {cτ ′ ∈ Cn−1 : cτ ∩ cτ ′ = cσ, cσ ∈ Cn−2}. Each Zτ is

topologically a cylinder for ∂cτ without boundary. We will extend each
hvw|∂cτ to the whole Zτ in such a what that the cocycle conditions are still
satisfyied. Consider any triple {cv1 , cv2 , cv3} as in (5.1). For each i = 1, 2, 3
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Figure 6. The intersection of Uτ with the (n− 1)-skeleton of C .

j, k 6= i, (ijk) ∼ (123), consider the intersection

Ii = pr−1
i

(
hvjvk(cτi ∩Uσ)

)
∩ V.

Now, for i = 1, 2, 3, and cσ as above, consider any collection of piecewise-
smooth maps H i

σ : (cτ1 ∪ cτ2 ∪ cτ3) ∩Uσ → G×G×G, satisfying that

(i) H i
σ ((cτ1 ∪ cτ2 ∪ cτ3) ∩Uσ) ⊂ Ii,

(ii) H i
σ|cσ = (hv1v2 , hv2v3 , hv3v1)|cσ ,

(iii) If for j 6= i there is cτ ′j such that int
(
cτj ∩ cτ ′j

)
⊂ Zτi \ cτi ,18 then

H i
σ|

int

(
cτj∩cτ ′j

) = H i
σ′ |

int

(
cτj∩cτ ′j

).
Such collections of maps would necessarily exist, since each one of the sets
(cτ1 ∪ cτ2 ∪ cτ3) ∩ Uσ deformation retracts to cσ. The set of maps {H i

σ} is
parametrized by the elements cσ ∈ Cn−2, with a choice of cyclic orientation
(5.1). Altogether, the functions {H i

σ}cσ∈Cn−2
determine extensions of each

hvjvk to Zτi , (ijk) ∼ (123). The extension to a subset Uτi ∩ cτj is defined

by means of the function Hj
σ. Conditions (ii) and (iii) above ensures that

the overall process gives a well-defined extension of hvjvk over Zτi , and
condition (i) ensures that the new functions would continue satisfying the
cocycle condition (B.1). Let us continue denoting by hvjvk such extension,
now as a function over Zτi ∪ cτi .

The second step of the construction is to extend each hvjvk to the whole
Uτi , and relies in the following observation. For any cσ ∈ Cn−2, consider its

18Here, int
(
cτj ∩ cτ ′j

)
denotes the (k − 2)-cell whose closure is cτj ∩ cτ ′j .
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triple {cτ1 , cτ2 , cτ3}, which has been cyclically oriented. For i = 1, 2, 3, the
sets

Bτi = Uτi ∩
(
cτi ∪ cvj ∪ cvk

)
, i 6= j, k, j 6= k,

which are open cylinders for cτi (whose boundary points contain Zτi), satisfy
Bτ1 ∩ Bτ2 ∩ Bτ3 = ∅ (figure 6). The latter property implies that, if we
consider an arbitrary piecewise-smooth extension of hvjvk to Bτi , for every
cτi , then, there is a unique way to further extend such maps to the sets

Uτi \ Bτi by forcing the cocycle condition to be satisfied on every triple
intersection Uσ, obtaining maps defined over Uτi . Hence, we can determine
a collection of maps {gvw : Uvw → G}, which define the cocycle we are
looking for. We emphasize that the set of transition functions that we have
constructed depends, a priori, on the choice of representatives hvw : cτ → G
for each cτ ∈ Cn−1 with a given orientation, and the choice of extensions of
such hvw to the sets Zτ ∪Bτ .

To conclude the proof, we must show that, if we start with another set
of representatives for our choice of cellular bundle data, or if we choose
different extensions of the hτ , the new cocycle would be equivalent to the
previous one. By the previous construction, any choice of extensions of any
pair of representatives hvw and h′vw of a given class [hvw] would be homo-
topic through cellularly-smooth functions satisfying the cocycle conditions,
hence the resulting homotopies gvw(t) between each gvw and g′vw would de-
fine transition functions for every t ∈ [0, 1]. Then, there is a well-defined
principal G-bundle over M × [0, 1]. It is a standard result, following the
homotopy invariance properties of principal bundles [13], that the bundles
resulting by restriction to the boundary are isomorphic. �
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